Full Scale Panel Test Report

5	TORK
	Materials Technology

DATE:	September 13, 2005	Material Testing • Non-Destru Product Evaluation • Construct	
TO:	Mr. Rich Lovdal, P.E. Allan Block Corporation 5300 Edina Industrial Blvd., Suite 100	662 Cromwell Avenue St. Paul, MN 55114 USA	
	Edina, MN 55439	Telephone : (651) 645-3601 Telefax : (651) 659-7348 Website : www.storktct.co	
PROJECT:	In-House AB Fence Testing	PROJECT NO.: PAGE:	325011 1 of 1

TESTING OF AB FENCE

INTRODUCTION:

This report is in reference to testing of an Allan Block AB Fence at their facility on March 16, 2005, as documented in a report prepared by Mr. Rich Lovdal of Allan Block Corporation, dated (copy attached). Stork Twin City Testing Corporation (Stork TCT) witnessed some of the testing described in Mr. Lovdal's report. The discussion that follows pertains to that testing. Our work was requested by Mr. Lovdal on or about November 23, 2004 and authorized by Mr. Tim Bott of Allan Block Corporation, on March 7, 2005. The scope of our testing work was as follows:

- Travel to the Allan Block Corporation test laboratory in Edina, Minnesota on March 16, 2005 to monitor the testing of the AB Fence. The AB Fence test specimen was constructed previous to the witnessed testing: Stork TCT personnel did not witness the construction of the tested specimen. Allan Block Corporation personnel also prepared the testing apparatus, which Stork TCT personnel observed.
- 2. Witness all testing of the AB Fence specimen on March 16, 2005, and verify the data collected.
- 3. Review the final test report Allan Block Corporation personnel prepared, and prepare a suitable cover letter for the purpose of verifying the test data presented therein.

CONCLUSION:

The description of AB Fence test specimen and test procedure, as described in Mr. Lovdal's report alluded to above, particularly in Appendix A (pages 6 - 9), is consistent with the observations made by Stork TCT personnel for test series 13 - 18. In addition, the test data reported in Appendix B (pages 10-18) is also consistent with the test results observed by Stork TCT personnel. Review and validation of the remainder of the report, its discussion and/or conclusions, as well as other test data presented are beyond the Stork TCT's scope of services.

REMARKS:

Should you have any questions concerning this report, or if we may be of further assistance, please contact us at (651) 659-7340.

STORK TWIN CITY TESTING CORPORATION

Thomas A. Kolden, P.E. Manager of Specialty Testing Construction Materials Department F:\BMC\2005CME\Specialty\325011\Report - 091205.doc

Thaddeaus Harnois, P.E. Staff Engineer Construction Materials Department

This agreement shall be governed exclusively by the general terms and conditions of sale and performance of testing services by Stork Twin City Testing, Inc. a North Carolina business corporation ("TCT") dd. 05/01/2001. In no event shall Stork Twin City Testing, Inc. be liable for any consequential, special or indirect loss or any damages above the cost of the work. Payment is due within 30 days of invoice.

Stork Twin City Testing Corporation is an operating unit of Stork Materials Technology B.V., Amsterdam, The Netherlands, which is a member of the Stork group

Allan Block AB Fence Testing

Full Scale Panel Test Report 12x7 Panel with an Articulating Spreader Frame

October 26, 2005

Introduction

This report gives the results for the full-scale panel tests preformed on the Allan Block fence panel. All tests were preformed in the Allan Block lab using Allan Block equipment and personnel along with a representative from Stork Twin City Testing (STCT) witnessing and certifying the testing procedures and results. These tests are an extension of the Fence Testing preformed at the University of Calgary in 2003 and the Allan Block testing preformed in August 2004. The main difference between the testing of 2004 and these current tests is the use of an articulating spreader frame assembly to simulate and distribute the wind load more evenly throughout the panel.

Objectives of Test Program

The principle objective of this test is to expand on what was learned in the Vertical Spreader Bar Tests and to further understand the added strength the dry-stacked units with their ball and socket configuration bring to the system. In the Vertical Spreader Bar tests the set up was designed to force a configuration that simulated a typical tributary area distribution by directing the applied load to the bond beams with a single vertical spreader bar. In these tests an articulating spreader frame (Figure 1) was used to evenly distribute the applied force to the test panel. Under this setup the eight drystacked courses, which comprise the majority of the tributary area of the panel, will be engaged by the spreader frame and provide a more accurate depiction of how the dry-stacked units receive, distribute and dissipate force. The added benefit to the inclusion of the dry-stacked units to resist applied forces will be the documentation of the force absorption ability of the panel. It was first observed in the Calgary panel testing that a dissipation of applied forces occurred during testing. Similar reductions were documented in the Vertical Spreader Bar tests. The expected outcome of these tests will be to reduce the design load to the post by quantifying a matrix of force reductions for fence panels of a certain height and applied wind force. These tests will record the applied force from the hydraulic ram and the received load at the posts using load cells at third points on each post, see Figure #2. For a complete description of the testing frame and equipment used see Appendix A.

By simply comparing the applied to received, a percentage of lost can be determined. Again in these tests the bond beams will be subjected to repeated bending and rebounding. Careful attention will be given to the recording of deflections and rebounds to document the extraordinary plasticity of the bond beams.

Test Procedure and Results

The test procedure is very straightforward and follows the same process set forth in the Vertical Spreader Bar tests. A force is applied to the panel using the hydraulic ram and spreader frame assembly. The load cell readings are recorded and summed together to obtain the total force

Figure 1: Articulating Spreader Frame

Figure 2: In Place Load Cell

applied to the posts. The applied forces are based on the standard Wind Stagnation Pressures (q) formula of $q = 0.5 * \rho * V^2$ where q is in lb/ft² (N/m²) and ρ is the average air density in lb/ft³ (kg/m³) and V is the average wind speed in ft/sec (m/sec) and are tabulated in Table 1 on page 4. For 16 of the 18 tests

preformed, the panel was stress to pressures associated with 120 to 130 mph (193 to 209 kph) winds and then released to zero pressure. For test numbers 12 and 18, the panel was stressed to failure. Failure occurred by having a dry-stacked block slip out of its joint which occurred both time at pressures related to 200 mph (322 kph) winds. No catastrophic failures occurred. After all tests, including the failure tests, the panel was simply forced back into a vertical position by manually hitting each dry-stacked block with a dead blow hammer until they were once again aligned vertically. No dismantling was required and no blocks required replacing due to damage and the results of the tests that followed showed no negative effects in strength or appearance from realigning.

The results of these tests focused on the following:

- Flexibility of the bond beams and dry-stacked units.
- The absorption of force which occurs within the panel.
- The additional strength the ball and socket brings to the whole system.

First the flexibility and durability of the bond beam continues to amaze. In the Vertical Spreader Bar tests, these exact bond beams were deflected 13 times to as much as 1.57 inches (40 mm). In these tests that followed, with the introduction of the articulating spreader frame, the recorded bond beam deflections were less because the dry-stack units were allowed to flex and contribute to the strength of the system. Each time the load was removed the bond beams relaxed back to their at-rest position and showed no visible defects or damage other than the original stress cracks which appeared after the very first test of the Vertical Spreader Bar tests. The bond beams reacted exactly how a monolithic concrete beam would react to repeated stress. The stress cracks would open

Figure 3: Horizontal Bond Beam Steel after demolition

slightly during stressing, which would engage the steel and would fully rebound and close when the load was removed. In total, these bond beams were used and stressed in 28 separate tests in which both bond beams flexed and rebound to zero deflection and the bottom bond beam never showed any downward deflections or sage. During dismantling of the panel a sledge hammer and great effort was required to force the bond beams destruction, Figure 3 shows the horizontal steel exposed after the removal of the bottom bond beam course which required repeated sledge hammer blows and manual cutting of the vertical stirrups to remove the lower course. The sand-mix grout shows a seamless, monolithic joining to the panel block and a complete encapsulation of the horizontal steel and the steel appears in like-new condition. This Figure clearly shows the high quality constructability the 2-course Bond Beam brings to the AB Fence system.

The absorption of forces is clearly evident in the results from the 18 separate tests tabulated in Appendix B. In none of these 18 tests did the applied forces equal the received forces at the post. Structural engineering teaches a standard static approach to applied forces in that "force in equals force out". However, a system of dry-stacked units which have a large selfweight and a ball and socket configuration, such as the AB panel blocks have, brings a dynamic variable to the static equation. This dynamic variable can best be described as Work Energy. Work is defined as a force (wind) acting upon an object (the panel block's ball and socket joint) to cause a displacement, see Figure 4. In the Allan Block Fence panel there are two forms of work energy being developed. First is the external work which is simply the deflection of the entire panel due to the wind force. The second occurs internally in the ball and socket joint. As the wind load is applied, the running bonds of the dry stacked block try and deflect

away from the force laterally, but the socket resists any deflection due to its natural conical locking configuration. The selfweight of all the courses above a particular joint provides the downward force which serves to stiffen the joint. Thus, the lower the joint is within the panel the greater the internal resisting forces within that socket. Therefore, most of the deflection within the panel occurred in the upper half.

The internal Work occurs when the applied force becomes great enough to overcome the frictional interaction within the socket, forcing deflection. There are two forms of deflection which could occur. The first is a purely horizontal translation, but this could only occur if the bottom tension

edge of the panel block were to shear off horizontally allowing the socket to release, see Figure 5. This form of deflection did not occur due to the internal strength of each block. The shear strength of a block is directly related to the compression strength, therefore the stronger the block the more resistant to shear failures and the stronger the ball and socket can become.

The second form of deflection, which did occur, was a movement along the natural sloped plane of the socket which provided displacement in an upward and lateral direction, variable Xt in Figure 4. Each movement when it occurred would be very small because the pressure within the socket would release and the fictional interaction would once again be greater than the applied load. Once the force was built up enough to overcome the internal resisting forces another

deflection would occur. Each time an internal deflection occurred a certain amount of force was absorbed into the joint causing a reduction of applied forces to the posts. The results showed that at low pressures the received loads are quite small, lowest recorded value was 28 percent in Test Series #4. This is due to the large number of areas within the panel that had the ability to shift or deflect early on. At higher pressures the number of joints having the ability to adjust decreases because movement has already occurred making the joint more ridged, which causes the amount of force received by the post to increase. See data tables in Appendix B for results form all tests.

The overall deflection of the panel was similar to a plate bending diagram with three ridged edges with the bottom and two sides fixed and the top restrained but allowed to deflect. The bottom bond beam had very little lateral deflection compared to top bond beam because of the additional strength it received from the lower dry stacked course which had the greater selfweight above them. In practical field applications the bottom bond beam would be fully fixed laterally and vertically due to its embedment into the soil. The deflections of the top and middle sections of the panel were very consistent throughout the tests. As mentioned earlier, the top bond beam deflected and rebound to its at-rest position after each test. The dry-stacked however, did not return to a zero deflection once the force was removed. Each time an internal deflection occurred due to the work energy, the joint was placed in a new at-rest state. When the load was removed, the bond beams had tension in the steel which pulled them back to zero, but the dry-stacked had only compression built up in the back faces of the block which when released had no ability to pull the blocks back. Therefore, the maximum differential deflection between the top bond beam and the middle dry-stacked is generally equal to the total deflection or maximum bow of the center dry stacks after the load is removed. Before the next test was conducted, the dry stacked units were force back to a vertical position for retesting.

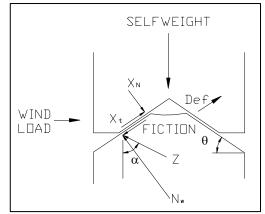


Figure 4: Work Energy Free-Body Diagram

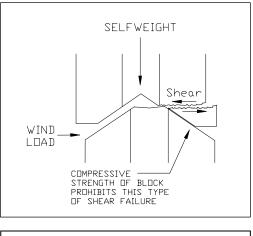


Figure 5: Possible Shear Failure Diagram

Conclusions and Recommendations

The following are a list of conclusions formulated from physical data and visual observation during testing:

- The Allan Block Fence panel has the ability to flex and absorb forces through the principle of Work Energy. The ability of the panel to absorb applied forces effectively act to resist the force and thus can be used in combination with the bond beam and post capacities to resist the applied loads. The net effect is that the structural posts can carry more tributary area which allows the posts to be spaced further apart and or less steel to be used within them.
- The AB Fence panel's ball and socket configuration becomes stronger as more courses are added to the panel by adding more selfweight with each course. The selfweight provides a downward force which converts the compressive stress of the block into a shear resisting mechanism which provides both the flexibility to the system at lower forces and the rigid, strengthening effect at higher forces. The net effect of considering the strength of the ball and socket in the design is the reduction of the number of required bond beams.
- The AB Panel bond beam, when constructed with sand mix grout and vertical stirrups as recommended by Allan Block, provides an incredible capacity to resist lateral forces while remaining plastic enough to rebound 100% from repeated deflection.
- The AB Panel bond beam while subjected to repeated horizontal deflections and rebounds showed no vertical sag of any measurable amount.
- The AB Panel bond beam is a composite beam that functions as a monolithic concrete beam. That is, the stressed beam cracked where expected, at the mid-span and not along the joints of the panel block. At the conclusion of testing all panel block of the bond beams were fully connected to the course above with no visible signs of distress other than the rebounded hairline cracks at mid span.
- If after large forces the dry-stacked panel blocks have deflected, their flexibility allows for them to be forced back into a plumb position without any damage.

The following Table 1 represents the recommended force reductions based on these test results. These reductions should only be applied to the design force acting on the posts. These values are limited to the design of the cantilever moments for fences of 8 ft (2.4 m) in height with no intermediate bond beams.

TABLE 1		Design Wir	d Speeds and	Stagnation F	ressures	
mph	70	80	90	100	110	120
(kph)	(112)	(129)	(145)	(161)	(177)	(193)
Pressure lb/ft^2	9.45	12.3	15.6	19.2	23.25	27.68
(kPa)	(0.45)	(0.59)	(0.75)	(0.92)	(1.113)	(1.325)
		Percentag	e of Design Fo	orce For Post	Design	
% *	50	55	65	70	80	90

* Percent values are a conservative reduction based on test results

APPENDIX A

Test Frame and Equipment

Test Frame and Equipment

Set-up #4 from the first round of testing was re-used for all tests in this series. The panel remained the same with the same bond beams. The dry stacked units were unstacked, inspected for defects and restacked. Also, the single vertical spreader bar was replaced with the articulating spreader frame. The panel system was made up of two typical, 7-panel block long, bond beams approximately 11'-7" (3.54m) with 8 dry stacked courses separating them. The bond beams were situated in a typical field condition with one forming the first two courses and the other forming the top two courses with the total panel height of 12 courses or 8'-0" (2.44 m). See Photos A1 - A4 for actual photos. The bottom bond beam was precast and set on top of a spacer block at each post. This was done to simulate the bottom bond beam free spanning from pier to pier. These typical Bond Beams consisted of 2-courses of standard panel block units, a #4 (10M) horizontal rebar between courses, 9 ga. (3.5 mm) wire stirrups in every other block core and a sand mix grout tested at 3100 psi (21.37 MPa) at 28 day strength, vibrated in all cores. The posts were cast at 13 course high to allow for the placement of the half block spacer at the base and the full 12 course tall test panel. Vertical wood beams were used to transfer all loads evenly to the post with the intent of having them act as a self-reacting load frame. The horizontal steel beam is supported at

the mid height of the panel, allowing the ram to remain in place during stressing. The Ram was placed at the center point of the panel with the articulating spreader frame attached to the end to distribute the applied forces across the height and width of the panel see Figure 6. To record the received forces 3-1000 lb load cells were placed at each post between the panel and post lip, see Figure 2. Deflection is measured using a string line transducer recording millimeters of movement. The device is fixed to the midpoint of the top bond beam,

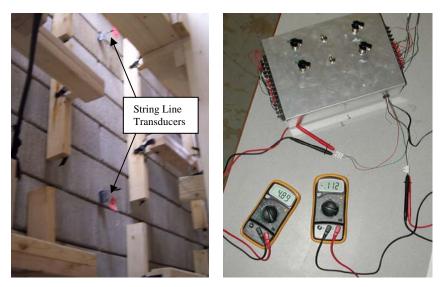
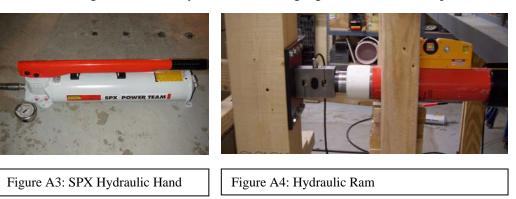
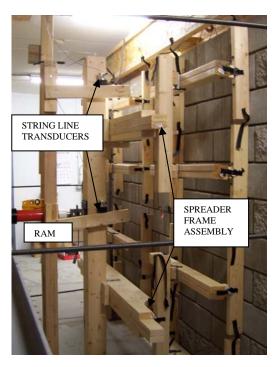



Figure A1: String Line Transducers

Figure A2: Switch Box and Volt Meters

and the mid-point of the center dry-stacked units, see Figure A1. A switch box that allows up to 10 load cells and 5 deflection transducers powers both the load cells and the deflection transducer. The Switch box sends a voltage signal to the voltmeters showing either pounds of force or millimeters of deflection see Figure A2. All applied forces come from a SPX Power Team 25 ton hydraulic ram and hand operated pump see Figures A3 and A4. In tests 4 - 12, the forces were determined by converting the required UBC forces into a psi so the readings could be easily read on the ram gauge. Tests 1 - 3 were preformed

in round one with the single vertical spreader bar. The converted force was done by using the UBC psf values and the panels tributary area and the factory determined



equivalent rod area of 5.15 in^2 . In the last 6, tests 13 - 18 which were observed by STCT, a 10,000 pound (44.82 kN) load cell was placed on the end of the ram to provide a higher level of accuracy, see Figure A4. The results of the last 6 will be highlighted in this report, however all individual results can be found in Appendix B.

Photo A1: Full-Scale Set-up #4

Photo A2: Beam, Ram and Spreader Frame

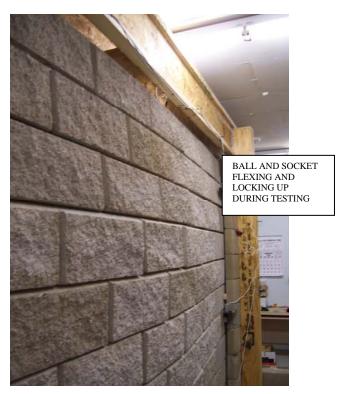

Photo A3: Spreader Frame Assembly

Photo A5: Spreader Frame Assembly and Block Flexing During Stressing

Photo A4: Panel During Stressing

APPENDIX B

Test Result Data

FULL HEIGHT PANEL TEST RESULTS (ROUND 2)

SERIES # 13 - # 18

-	1	1
2	1	1
9		
÷		
2	1	;
3		5

Testing = 3/16/2005

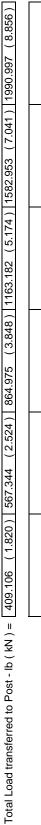
	Released 0.0 (0.000) 3.000 0.118	6 2547.0 (11.330) 34.000 1.339	(kN) 5 2137.0 (9.506) 29.000 1.142	Applied Load To Panel - Ib (kN) 4 4 23 592) 1767.0 (7.860) 213 25.000 0.984 0.984 0	3 1437.0 (6.3 21.000 0.827	2 1127.0 (5.013) 17.000 0.669	1 867.0 (3.857) 12.000 0.472	Force Point # => Deflection at Top (mm) = Deflection at Top (in) =
	3.000 0.118	34.000 1.339	29.000 1.142	25.000 0.984	21.000 0.827	17.000 0.669	12.000 0.472	(Li Li
mm) = 12.000 17.000 21.000 25.000 29.000 34.000 (in) = 0.472 0.669 0.827 0.984 1.142 1.339				(000.1) 0.101	(280.0) 0.1451	(0.010)	001.0 (3.037)	
867.0 (3.857) 1127.0 (5.013) 1437.0 (6.392) 1767.0 (7.860) 2137.0 (9.506) 2547.0 (11.330) 0.0 nm) = 12.000 17.000 21.000 25.000 29.000 34.000 3 (in) = 0.472 0.669 0.827 0.984 1.142 1.339 0	Released			4	3	2	-	Force Point # =>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(kN)	d Load To Panel - Ib	Applie			

15.000 0.591

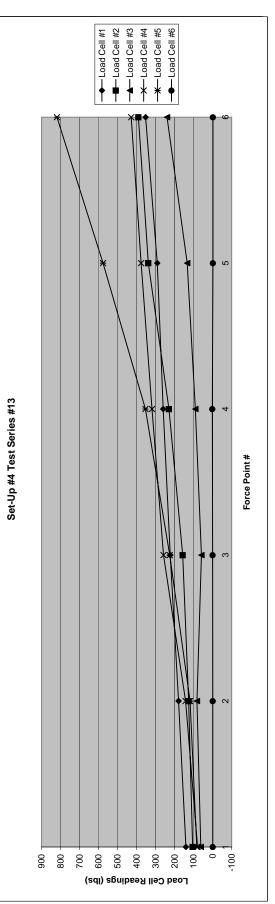
46.000 1.811

36.000 1.417

28.000 1.102


23.000 0.906

15.000 0.591


Deflection at Mid-Panel (mm) = 10.000Deflection at Mid-Panel (in) = 0.394

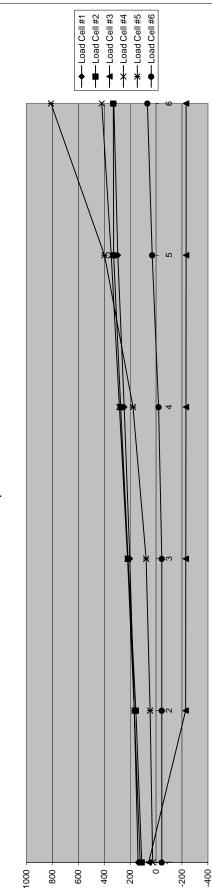
שמומ
5
5

						Appli	ed Load To	Applied Load To Panel - lb (kN)	(kN)				
<u> </u>	Force Point # =>		_	^N			3	7	4		5	9	
I		867.0	(3.857)	1127.0	(5.013)	1437.0	(6.392)	(3.857) 1127.0 (5.013) 1437.0 (6.392) 1767.0 (7.860) 2137.0 (9.506) 2547.0 (11.330	(7.860)	2137.0	(9.506)	2547.0	(11.330)
L	Load Cell				Appl	ied Load F	Recieved at	Applied Load Recieved at each Load Cell - lb (kN)	ł Cell - Ib (kN)			
I	1	140.571	(0.625)	179.335	(0.798)	223.200	(0.993)	(0.625) 179.335 (0.798) 223.200 (0.993) 259.924 (1.156) 291.548 (1.297) 352.754 (1.569)	(1.156)	291.548	(1.297)	352.754	(1.569)
<u> </u>	2	105.399	(0.469)	126.559	(0.563)	157.440	(0.700)	(0.469)	(1.022)	338.167	(1.504)	390.815	(1.738)
Total Received Force	3	62.585	(0.278)	(0.278) 82.945 (0.369)	(0.369)	59.175	(0.263)	59.175 (0.263) 90.668 (0.403) 133.796 (0.595) 240.110 (1.068)	(0.403)	133.796	(0.595)	240.110	(1.068)
loes not include	4	79.500	(0.354)	142.400	(0.633)	258.400	(1.149)	(0.354) 142.400 (0.633) 258.400 (1.149) 319.400 (1.421) 376.400 (1.674) 428.400 (1.906)	(1.421)	376.400	(1.674)	428.400	(1.906)
oad cells #3 and #6	** 5	83.636	(0.372)	119.049	(0.530)	225.935	(1.005)	(0.372) 119.049 (0.530) 225.935 (1.005) 354.026 (1.575) 576.839 (2.566) 819.027 (3.643)	(1.575)	576.839	(2.566)	819.027	(3.643)
tue to their location	9	-0.750	-(0.003)	-0.429	-(0.002)	-0.214	-(0.001)	-(0.003) -0.429 -(0.002) -0.214 -(0.001) 1.928 (0.009) -1.286 -(0.006) -1.286 -(0.006)	(0.009)	-1.286	(0.006)-	-1.286	-(0.006)

78%	
74%	
66%	
60%	
20%	
47%	
Percentage of Applied Load Received by Post =	1

Testing = 3/16/2005	Applied Load To Panel - Ib (kN)	3 4 5 6 Relea	.147) 1472.0 (6.548) 1797.0 (7.993) 2167.0 (9.639) 2572.0 (11.441) 0.0	12.000 16.000 20.000 23.000 28.000 1.000 0.472 0.630 0.787 0.906 1.102 0.039	-	11.000 18.000 21.000 26.000 32.000 9.000	0.433 0.709 0.827 1.024 1.260 0.354		Applied Load To Panel - Ib (kN)	2 3 4 5 6	(5.147) 1472.0 (6.548) 1797.0 (7.993) 2167.0 (9.639) 2572.0 (11.441)	Applied Load Recieved at each Load Cell - Ib (kN)	(0.684) 203.818 (0.907) 250.743 (1.115) 286.447 (1.274) 315.010 (1.401)	125.547 (0.558) 185.283 (0.824) 261.219 (1.162) 303.743	1 37 110 (0165) A2 125 (0187) 63 187 (0281) 147 A36 (232 000 (1036) 281 000 (1254) 302 000 (1555) 412 000		556.926 (2.477) 693.627 (3.085) 828.176 (3.684) 989.635	-(0.130)] -72.097 -(0.321)] -73.168 -(0.325)] -73.168 -(0.325)] -73.168 -(0.325)]	(3.139) 1119.191 (4.978) 1411.553 (6.279) 1718.742 (7.645) 2021.288 (8.991)	61% 79% 79% 79%	Set-Up #4 Test Series #14		*		+ − Load Cell #5	
	-	-	3.990) 1157	8.000 12.0 0.315 0.4		6.000 11.0	0.236 0.4			-	897.0 (3.990) 1157.0		130.013 (0.578) 153.833	(0.284)		(0.000)	1 00000	(0.686)	-71.561 -(0.318) -29.246	469.247 (2.087) 705.575	52% 61				*	×	-
Deflection Data		Force Point # =>		Deflection at Top (mm) = Deflection at Top (in) =	 -	Deflection at Mid-Panel (mm) = \lceil	Deflection at Mid-Panel (in) =	Load Cell Data		Force Point # =>		Load Cell		2		,		5	due to their location 6	Total Load transferred to Post - Ib (kN) = $\left[\frac{1}{2}\right]$	Percentage of Applied Load Received by Post =		1200	800	600	400 **	

** Load Cell #5 produced results inconsistent with earlier tested. Resultant forces recorded were 2 to 3 times higher than in the same tests run in series 4 - #12


Force Point #

-200

ruii ocale lest kesuits using a Articulating opreader Frame Deflection Data		Testing = 3/16/2005	Testing = 3/16/2005				
				Applied Load To Panel - Ib (kN	(¢	-
Force Point # =>	870.0 (3.870)	Z 1130.0 (5.026)	3 1435.0 (6.383)	4 1775.0 (7.896)	5 2140.0 (9.519)	6 2545.0 (11.321)	Keleased 0.0 (0.000)
Deflection at Top (mm) = Deflection at Top (in) =	= 11.000 0.433	14.000 0.551	18.000 0.709	22.000 0.866	26.000 1.024	30.000 1.181	2.000 0.079
Dofloction of Mid Donal (mm) -	10,000	13 000	18 000	33 000	38 000	31 000	0000
Deflection at Mid-Panel (in) =		0.512	0.709	0.906	1.102	1.339	0.354
Load Cell Data							
			Applied Load To Panel - lb (kN)	Panel - Ib (kN)			
Force Point # =>	-	2	3	4	5	9	
	870.0 (3.870)	1130.0	1435.0 (6.383)	1775.0 (7.896)	2140.0 (9.519)	2545.0 (11.321)	
Load Cell		Appl	Applied Load Recieved at each Load Cell - Ib		(kN)		
1	138.735 (0.617)	(0.7	201.982 (0.898)	245.847 (1.094)	294.812 (1.311)	325.415 (1.448)	
2	110.360 (0.491)	155.921 (0.694)	215.657 (0.959)	272.356 (1.211)	327.029 (1.455)	329.054 (1.464)	
m	57.169 (0.254)	-228.676 -(1.017)	-229.679 -(1.022)	-230.682 -(1.026)	-231.685 -(1.031)) -231.685 -(1.031)	
4				283.000 (1.259)	346.000	418.000	
** 5	25.833 (0.115)	45.208 (0.201)	76.424 (0.340)	177.605 (0.790)	397.189 (1.767)	810.524 (3.605)	
9	'	-44.994	-43.922		29.996	66.419 (
Total Load transferred to Post - Ib (kN) =	396.928 (1.766)	537.448 (2.391)	714.063 (3.176)	978.807 (4.354)	(4.354) 1365.030 (6.072) 1882.993	1882.993 (8.376)	
Percentage of Applied Load Received by Post =	46%	48%	50%	55%	64%	74%	
		Set-U	Set-Up #4 Test Series #15				
					**	X	■ Load Cell #2 ▲ Load Cell #3
			*				-X-Load Cell #4
*		*			•		
		- • c)- L		
7		0	t		C	Ð	

Force Point #

16	
#	
Ś	
.ie	
e	
S	
÷	
#	
Ť	
S	
÷	
မ္မ	
ï	
g	
ti	
ŝ	
Ĕ	
2	
#	
p	
Ч	
ō	
2	
)	
ĥ	
ar	
Ē	
5	
e	
ã	
e	
ß	
5	
Ĕ	
ti	
el la	
ປ	
Ŧ	
Ā	
g	
ō	
in	
ns	
s	
It	
SL	
é	
R	
ŝ	
Тe	
a	
al	
Ň	
5	
ull	
Ū,	

9	١	j
1	Ī	1
٢		١
	_	
1		1
-		
1	Ł	5
(d)
4		
2	1	ļ
L		1
	Deficient Defic	Deflection Data

Testing = 3/16/2005

Force Deint #		c		Applied Load To Panel - Ib (KN)		ų	Docood
	881.0 / 3.010.)	2 1131 0 / E (131)	2 2 3 3 3 3 3 3 4 4 3 3 3 3 4 4 3 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 5 5 5	4 1766 0 17856 1	0 21110 (0521)	0 25/6/0 /11325/	
Deflection at Ton (mm) =	100001	13 000	12 000 12		24 000		0.0
~ ~	0000		000.1	202.0	0.045	20,002	0000
	0.334	210.0	0.009	U./0/	0.343	1.102	0.000

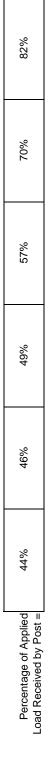
3.000 0.118

29.000 1.142

23.000 0.906

19.000 0.748

15.000 0.591


11.000 0.433

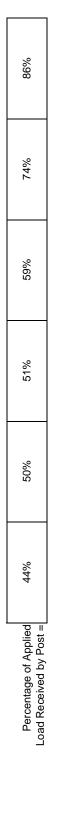

Deflection at Mid-Panel $(mm) = \frac{8.000}{0.315}$ Deflection at Mid-Panel $(in) = \frac{0.315}{0.315}$

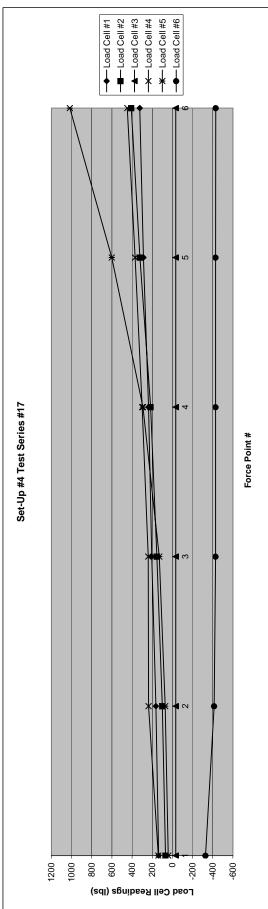
Load Cell Data

L						Applie	∋d Load To	Applied Load To Panel - Ib (kN)	(kN)	_			
	Force Point # =>	, <u> </u>	_	2			3	7	1	5		6	
		881.0	(3.919)	1131.0	(5.031)	1441.0	(6.410)	1766.0	(7.856)	(3.919) 1131.0 (5.031) 1441.0 (6.410) 1766.0 (7.856) 2141.0 (9.524) 2546.0 (11.325)	(9.524)	2546.0	(11.325)
<u> </u>	Load Cell				Appl	Applied Load Recieved at each Load Cell - Ib (kN)	tecieved at	each Loac	d Cell - Ib (kN)			
	1	136.695	(0.608)	161.177	(0.717)	199.942	(0.889)	235.646	(1.048)	(0.608) 161.177 (0.717) 199.942 (0.889) 235.646 (1.048) 284.611 (1.266) 320.315 (1.425)	(1.266)	320.315	(1.425)
	2	196'12	(0.347)	112.385	(0.500)	168.071	(0.748)	245.019	(1.090)	(0.347) 112.385 (0.500) 168.071 (0.748) 245.019 (1.090) 351.329 (1.563) 396.890 ((1.563)	396.890	(1.765)
Total Received Force	3	-48.142	-(0.214)	-48.142	-(0.214)	-48.142	-(0.214)	-48.142	-(0.214)	-(0.214) -48.142 -(0.214) -48.142 -(0.214) -48.142 -(0.214) -48.142 -(0.214) -48.142 -(0.214)	-(0.214)	-48.142	-(0.214)
does not include	4	142.000	(0.632)	188.000	(0.836)	243.000	(1.081)	305.000	(1.357)	(0.632) 188.000 (0.836) 243.000 (1.081) 305.000 (1.357) 372.000 (1.655) 445.000 (1.979)	(1.655)	445.000	(1.979)
oad cells #3 and #6	** 5	34.445	(0.153)	60.278	(0.268)	100.105	(0.445)	227.119	(1.010)	(0.153) 60.278 (0.268) 100.105 (0.445) 227.119 (1.010) 490.835 (2.183) 935.385 (4.161)	(2.183)	935.385	(4.161)
due to their location	6	-263.534	-(1.172)	-318.169	-(1.415)	-322.455	-(1.434)	-323.526	-(1.439)	-(1.172) -318.169 -(1.415) -322.455 -(1.434) -323.526 -(1.439) -322.455 -(1.434) -323.526 -(1.439)	-(1.434)	-323.526	-(1.439)

	מומ
2	נ
oction	
4	
2	ę
	1

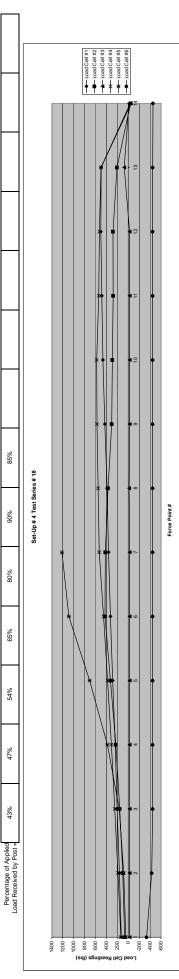
Testing = 3/16/2005


Force Point # =>	1 876.0 / 3.807.1	2 1136.0 / 5.053.1	3	Applied Load To Panel - Ib (kN) 4 410) 1771 0 7.14	(kN) 5 21410 (9524)	6 5551 0 / 11 317 1	Released
Deflection at Top (mm) = Deflection at Top (in) =	-0.394	3.000 .512	-17.000 -17.000 -0.669				0000


0.000 -28.000 -1.102 -23.000 -0.906 -19.000 -0.748 -15.000 -0.591 -11.000 -0.433 -8.000 -0.315 Deflection at Mid-Panel (mm) = Deflection at Mid-Panel (in) =

Load Cell Data

					Applie	ed Load Tc	Applied Load To Panel - lb (kN)	(kN)				
Force Point # =>	1		^N	~		3	7	1	ì	2	9	
	876.0	(3.897)	1136.0	(5.053)	(3.897) 1136.0 (5.053) 1441.0 (6.410) 1771.0 (7.878) 2141.0 (9.524) 2551.0 (11.347)	(6.410)	1771.0	(7.878)	2141.0	(9.524)	2551.0	(11.347)
Load Cell				Appl	Applied Load Recieved at each Load Cell - Ib (kN)	tecieved at	t each Load	d Cell - Ib (kN)			
t	136.695	(0.608)	164.238	(0.731)	136.695 (0.608) 164.238 (0.731) 205.042 (0.912) 236.666 (1.053) 287.671 (1.280) 324.395 (1.443)	(0.912)	236.666	(1.053)	287.671	(1.280)	324.395	(1.443)
2	67.836	(0.302)	99.223	(0.441)	153.896	(0.685)	215.657	(0.959)	322.980	(1.437)	408.027	(1.815)
с	-34.101	-(0.152)	-34.101	-(0.152)	-34.101	-(0.152)	-34.101	-(0.152)	-34.101	-(0.152)	-34.101	-(0.152)
4	139.000	(0.618)	237.000	(1.054)	139.000 (0.618) 237.000 (1.054) 239.000 (1.063) 300.000 (1.334) 370.000 (1.646) 447.000 (1.988)	(1.063)	300.000	(1.334)	370.000	(1.646)	447.000	(1.988)
s **	41.979	(0.187)	72.118	(0.321)	41.979 (0.187) 72.118 (0.321) 130.244 (0.579) 291.702 (1.298) 601.703 (2.676) 1017.191 (4.525	(0.579)	291.702	(1.298)	601.703	(2.676)	1017.191	(4.525)
9	-328.882	-(1.463)	-328.882 -(1.463) -414.584 -(1.844) -428.511 -(1.906) -428.511 -(1.906) -428.511 -(1.906) -429.582 -(1.911)	-(1.844)	-428.511	-(1.906)	-428.511	-(1.906)	-428.511	-(1.906)	-429.582	-(1.911)



Testing = 3/16/2005
Deflection Data

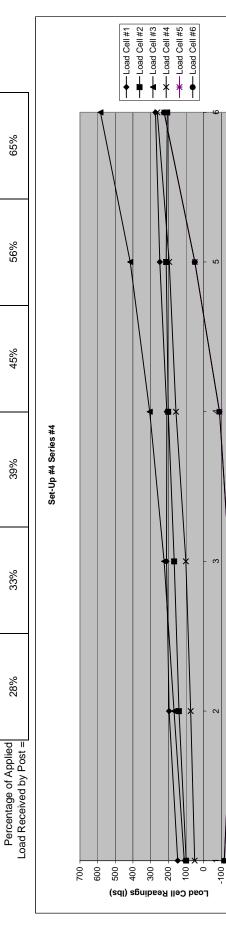
_							Annlind Lond To Danel - Ih	Co Danal - Ib / UNI)						
Force Point # =>	F	2	6	4	5	9			6	10	11	12	13	14
	868.0 (3.861)) 1133.0 (5.040	1438.0 (6.397) 1768.0 (7.864)	2138.0 (9.510)	2548.0 (11.334)	2988.0 (13.291)) 3218.0 (14.314)	3448.0 (15.337)	3678.0 (16.360)	3908.0 (17.384)	4138.0	(19.430) 4368.0 (19.430)	4588.0 (20.408)
Deflection at Top (mm) =	10.000	14.000	17.000	22.000	24.000	28.000	32.000	34.000	36.000	37.000	39.000	41.000	42.000	0.000
Deflection at Top (in) =	0.394	0.551	0.669	0.866	0.945	1.102	1.260	1.339	1.417	1.457	1.535	1.614	1.654	0.000
Deflection at Mid-Panel (mm) =	8.000	11.000	15.000	19.000	23.000	27.000	34.000	39.000	45.000	52.000	60.000	69.000	83.000	42.000
Deflection at Mid-Panel (in) =	0.315	0.433	0.591	0.748	0.906	1.063	1.339	1.535	1.772	2.047	2.362	2.717	3.268	1.654
Load Cell Data														
-							Applied Load To Panel - Ib	o Panel - Ib (kN)						
- Hitshell - Hitshell		d	c			c	r		c	07				

													Appi	ied Load T	Applied Load To Panel - lb (kN	(KN)												Γ
	Force Point # =>	1		2		3		4		5		9		7	3	8		6	10		11		12		13		14	
		868.0 (3	.861) 1	868.0 (3.861) 1133.0 (5.040)	340) 143	1438.0 (6.397)	9Z) 1768	1768.0 (7.864)	21	0 (9.51() 2548.0	(11.334	1) 2988.0	(13.291	[38.0 (9.510)] 2548.0 (11.334)] 2988.0 (13.291)] 3218.0 (14.314)] 3448.0 (15.337)] 3678.0 (16.360)]	(14.314)	3448.0	(15.337)	3678.0 (16.360)	3908.0 (17.384) 4	138.0 (15	3.407) 43	368.0 (19	3908.0 (17.384) 4138.0 (18.407) 4368.0 (19.430) 4588.0 (20.408	8.0 (20.4	408)
	Load Cell											AF	pplied Load	Recieved :	Applied Load Recieved at each Load Cell - Ib (kN)	d Cell - Ib	(kN)											
	1	128.534 (0	.572) 1t	128.534 (0.572) 163.218 (0.726) 203.002 (0.903) 238.706	726) 203.	002 (0.9	03) 238.7	706 (1.062)	28	6.651 (1.275	5) 327.45	5 (1.457	361.115	(1.606)	(1.275) 327.456 (1.457) 361.119 (1.606) 387.642 (1.724) 430.487 (1.915) 464.150 (2.065) 484.553 (2.155) 503.935 (2.242) 495.774 (2.205) -37.744 -(0.168	(1.724)	430.487	(1.915)	464.150	2.065) 4	84.553 (2.155) 5(33.935 (2	.242) 49	95.774 (2	205) -37.	744 -(0.1	168)
	2	66.823 (0	.297) 1(66.823 (0.297) 101.248 (0.450) 156.934 (0.698) 225.782	450) 156.	934 (0.6	(98) 225.7	782 (1.00	4) 326.01	7 (1.45(7) 425.24	7 (1.892	420.177	(1.869)	6.017 (1.450)] 425.240 (1.892)] 420.177 (1.869)] 370.566 (1.648)] 302.730 (1.347)] 292.605 (1.302)] 275.393 (1.225)] 280.456 (1.248)] 205.532 (0.914)] -43.536 ·	(1.648)	302.730	(1.347)	292.605	1.302) 2	75.393 (1.225) 24	30.456 (1	.248) 20	0) 2:532 (0)	914) -43.	536 -(0.1	194)
* Total Received Force	3	-26.077 -(0	1.116) -2	-26.077 -(0.116)] -26.077 -(0.116)] -26.077 -(0.116)] -26.077 -(0.116)]	116) -26.0	077 -(0.1	116) -26.0	77 -(0.11	6) -26.07	7 -(0.11	5) -26.07	7 -(0.116	() -26.077	-(0.116)	-26.077 -(0.116) -26.077 -(0.116) -26.077 -(0.116) -15.245 -(0.068) -26.077 -(0.116) -26.077 -(0.116) -26.077 -(0.116) -24.071 -(0.107) 73.217 (0.326)	-(0.068)	-26.077	-(0.116)	-26.077 -	0.116) -	26.077 -(0.116) -2	4.071 -(C	.107) 73	3.217 (0	326) -14.042 -	0.0 -(0.0	062)
does not include	4	137.000 (0	.609) 18	137.000 (0.609) 188.000 (0.836) 248.000 (1.103) 308.000 (336) 248.	000 (1.1	03) 308.0	000 (1.370)	375	1.68t (1.68t	3) 453.00	3 (2.015) 532.000	(2.366)	0.000 (1.666) 453.000 (2.015) 532.000 (2.366) 552.000 (2.455) 574.000 (2.553) 580.000 (2.580) 541.000 (2.406) 529.000 (2.353) 500.000 (2.224) -56.000	(2.455)	574.000	(2.553)	580.000	2.580) 5	41.000 (2.406) 5:	29.000 (2	.353) 50	00.000 (2	224) -56.	0.249 -(0.249	249)
load cells #3 and #6	** 5	45.208 (0	.201) 8.	45.208 (0.201) 82.882 (0.369) 164.688 (0.733) 381.043 (369) 164.	688 (0.7	33) 381.(043 (1.695)	70	3 (3.15)	5) 1089.30	9 (4.845) 1216.32	4 (5.410)	9.343 (3.155) [1089.309 (4.845)] [216.324 (5.410)] <= Load Cell #5 showing a Spike and is blocked out as to not damage load cell further	Cell #5 sho	wing a Spi	ke and is b	ocked out a	s to not da	mage load	cell further						
due to their location	9	-337.452 -(1.501)] -430.654 -(1.916)] -447.794 -(1.992)] -447.794 -(.501) -4.	130.654 -(1.	916) -447.	.794 -(1.5	992) -447	794 -(1.99	(1.992) -447.79	34 -(1.99.	2) -448.86	5 -(1.997	•) -447.79	1 -(1.992)	7.754 - (1.992) 448.865 - (1.997) 477.794 - (1.992) 447.794 - (1.992) 447.794 - (1.992) 447.794 - (1.992) 447.794 - (1.992) 447.794 - (1.992)	-(1.992)	-447.794	-(1.992)	- 447.794	1.992) ~	147.794 -(1.992) -4	47.794 -(1	.992) -44	47.794 -(1	992) -452	079 -(2.0	(11)
Total Load trans	Total Load transferred to Post - Ib (kN) = 377.566 (1.679) [535.347 (2.381)] 772.624 (3.437) [1153.531 (5.131)]	377.566 (1	.679) 5:	35.347 (2.	381) 772.	624 (3.4	37) 1153.	531 (5.13	1) 1701.0	11 (7.56t	3) 2295.00	10.205	1701.011 (7.566) 2295.004 (10.209) 2529.620 (11.252	7 (11.252	~													
																												1

FULL HEIGHT PANEL TEST RESULTS (ROUND 2)

SERIES # 4 - # 12

Ita	
õ	
5	
Ċ	
fle	
å	


Date Tested = 10/11/2004

					Applie	Applied Load To Panel - lb (kN)	anel - Ib (k	(N)					
Force Point # =>	-	2		ĉ	~	4		CD.	2	9	(Rele	Released
	1030.0 (4.582)	1287.5	(5.727) 1545.0		(6.872)	1931.3 (8.591) 2317.5 (10.309) 2832.5 (12.600)	(8.591)	2317.5	(10.309)	2832.5	(12.600)	0.0	(0.000)
Deflection at Top (mm) =	7.000	90.6	0	11.0	1.000	14.000	00	17.(17.000	20.000	000	.1	1.000
Deflection at Top (in) =	0.276	0.35	14	0.4	.433	0.551	51	0.6	.669	0.7	0.787	0.	0.039

Load Cell Data

-				1	1	1	i	1	1
	0	(12.600)		(1.212)	(0.917)	(2.599)	(1.168)	(1.361)	(0.996)
	9	2832.5		272.472	206.039	584.228 (262.500 (1.168)	306.018 (1.361)	223.897
		(10.309)		(1.103)	(0.944)			(0.739)	(0.224)
	2	2317.5	(247.989	212.114	415.729 (1.849)	194.500	166.087 (0.739)	50.350 (0.224)
(N)		(8.591)	cell - Ib (kN	(0.926)	(0.889)	(1.358)	156.500 (0.696) 194.500 (0.865)	96.445 (0.429)	
Panel - Ib (I	4	1931.3 (8.591) 2317.5 (10.309) 2832.5 (12.600	each Load C	208.205	199.964 (0.889) 212.114 (0.944)	305.403 (1.358)	156.500	96.445	-89.987 -(0.400)
Applied Load To Panel - Ib (kN		Applied Load Recieved at each Load Cell - Ib (kN	(0.935)	(0.741)	(0.997)	(0.447)	(0.181)	-(0.648)	
Appli		1545.0	plied Load F	195.963 (0.872) 210.245 (0.935) 208.205 (0.926) 247.989 (1.103) 272.472 (1.212)	139.215 (0.619) 166.552	224.163	100.500	40.580	-145.694 -(0.648)
		(5.727)	Ap	(0.872)	(0.619)			(0.010)	
	2	1287.5 (5.727)		195.963	139.215	167.997 (0.747)	73.500 (0.327)	2.260	.519) -156.407 -(0.696)
		(4.582)		(0.655)	(0.440)	(0.488)	(0.225)	(000'0)	0)
	~	1030.0		147.202	98.818	109.624	50.500	-0.108	-116.769 -(0.
	Force Point # =>		Load Cell	1	2	3	4	5	9

Total Load transferred to Post - lb (kN) = 289.267 (1.287) 422.529 (1.879) 596.346 (2.653) 876.529 (3.899) 1286.769 (5.724) 1855.153 (8.252)

Force Point #

-200]

) - Set-Up # 4 - Series # 5	
Round # 2 Testing	
Spreader Frame (
g a Articulating	
III Scale Test Results usin	
Ē	

Data	
eflection	
Δ	


Date Tested = 10/12/2004

			Applied Lo	Applied Load To Panel - Ib (kN)			
Force Point # =>	1	2	£	4	2	9	Released
	1030.0 (4.582)	1287.5 (5.727)	1545.0 (6.872)	1931.3 (8.591)) 2317.5 (10.309)	2832.5 (12.600)	0.0 (0.000)
Deflection at Top (mm) =	5.000	8.000	10.000	13.000	15.000	19.000	-1.000
Deflection at Top (in) =	0.197	0.315	0.394	0.512	0.591	0.748	-0.039

Load Cell Data

Force Point # => 1 1 1 Load Cell 1030.0 (4.582) 1 Load Cell 74.774 (0.333) 1 2 95.780 (0.426) 1 3 69.606 (0.310) 1 4 30.300 (0.135) 1 5 0.000 (0.000) 1	2 1287.5 (5.727) 99.359 (0.442) 99.359 (0.606) 136.279 (0.606) 124.970 (0.556) 52.900 (0.235) 0.000 (0.000)	2 1287.5 (5.727) 99.359 (0.442) 36.279 (0.606) 24.970 (0.556) 52.900 (0.235) 0.000 (0.000)	Applied L 2 Applied Load Reci 99.359 (0.442) 1545.0 99.359 (0.442) 113.436 136.279 (0.606) 166.856 124.970 (0.556) 180.133 52.900 (0.235) 81.900 0.000 (0.00) 0.000	Applied Load To Panel - Ib (KN) 2 3 4 1287.5 (5.727) 1545.0 (6.872) 1931.3 (8.591) Applied Load Recieved at each Load Cell - Ib (KN) 99.359 (0.442) 113.436 (0.505) 139.959 (0.623) 136.279 (0.606) 166.856 (0.742) 208.367 (0.927) 124.970 (0.556) 81.900 (0.364) 135.000 (0.601) 52.900 (0.235) 81.900 (0.364) 135.000 (0.601) 0.000 (0.000) 0.000 (0.000) 48.115 (0.214)) (8.591) (8.591) (0.623) (0.623) (0.927) (1.198) (0.214) (0.2	lel - Ib (KN) 5 1931.3 (8.591) 2317.5 (10.309) h Load Cell - Ib (KN) 154.241 (0.686) 139.959 (0.623) 154.241 (0.686) 139.957 (0.927) 229.629 (1.021) 268.397 (1.198) 327.569 (1.457) 135.000 (0.601) 174.000 (0.774) 48.115 (0.214) 96.014 (0.427)	5 (10.309) (0.686) (1.021) (1.457) (0.774) (0.427)	lel - Ib (KN) 5 6 6 6 1931.3 (8.591) 2317.5 (10.309) 2832.5 (12.600 h Load Cell - Ib (KN) 139.959 (0.623) 154.241 (0.686) 181.784 (0.809) 208.367 (0.927) 229.629 (1.021) 252.916 (1.125) 269.397 (1.198) 327.569 (1.457) 487.040 (2.166) 135.000 (0.601) 174.000 (0.774) 228.000 (1.014) 135.000 (0.014) 174.000 (0.774) 228.000 (1.014) 48.115 (0.214) 96.014 (0.427) 245.633 (1.093)	(12.600) (0.809) (1.125) (1.014) (1.093)
6 1.071 (0.005)	17.140 (0.076)		31.067 (0.138)	(0.138)	84.631	84.631 (0.376)	58.920 (0.262)	(0.262)	12.855 (0.057)	(0.057)

ransferred to Post - lb (kN) = \Box	271.531	(1.208)	430.648	(1.916)	573.392	(2.551)	885.469	(3.939)	1040.373	(4.628)	1408.228	(6.264)
Percentage of Applied Load Received by Post =	26%	, v	33%	%	37%	%	46%	6	45%	%	50%	%

Deflection Data			Dat	Date Tested =	10/19/2004						
					Applied	Applied Load To Panel - Ib (kN)	- Ib (kN)				
Force Point # =>	- 1		2	3		4		5	9		Released
Definetion of Tax (man)	1030.0) 1287.9	(5.727)	1545.0	(6.872)	1931.3 (8.591	91) 2317.5	.5 (10.309)	2832.5 (12.600)	0.0 (0.000)
Deflection at Top (in) =	0.236	00	0.315	0.433	33	0.551		0.630	0.709	20	0.118
Deflection at Mid-Panel (mm) =	6.000	10	10.000	15.000	000	23.000		31.000	40.000	0	27.000
Deflection at Mid-Panel (in) =		0	0.394	0.591	91	0.906		1.220	1.575	2	1.063
Load Cell Data											
				Applie	ed Load To P	Applied Load To Panel - Ib (kN)					
Force Point # =>	-		2	e S		4		5	9		
	1030.0 (4.582)	2) 1287.5	(5.727)	1545.0	(6.872)	1931.3 (8.591)	91) 2317.5		2832.5 ((12.600)	
Load Cell			AF	Applied Load Recieved at	tecieved at e	each Load Cell - Ib (kN	o (kN)				
-	_		(0.382)	98.951		_		\sim		(0.989)	
2			(0.502)	133.545))		166.957	(0.743)	
3		_	(0.727)	206.611	(0.919)	_	-	61 (1.896)		(2.436)	
4		((0.404)	118.900)	((1.245)	
5	81.052 (0.361	1) 127.337	(0.566)	188.692	(0.839)	268.345 (1.194)	94) 322.164		328.623	(1.462)	
9	-20.354 -(0.091)	1) -33.210	-(0.148)	-58.920	-(0.262)	-102.843 -(0.457)	57) -63.205	05 -(0.281)	-96.415 -	-(0.429)	
		E									
I otal Load transferred to Post - ID (KN) =	383.137 (1.704)	4) 547.194	(2.434)	681.19	(900.5)	943.927 (4.199)	99) 1260.771	(809.6) 1//	1449.068	(6.446)	
Percentage of Applied Load Received by Post =	a 37%	4	43%	45%	%	49%		54%	51%		
				Set-Up #4	Set-Up #4 Series #6						
600											
500 bs)											
0) agnibes 8	4		-					* *•			
-1	•				4					-6	

Force Point #

-200 -

Full Scale Test Results using a Articulating Spreader Frame (Round # 2 Testing) - Set-Up # 4 - Series # 6


Released	0.0 (0.000)	-1.000 -0.039	23.000 0.906												→ Load Cell #1 → Load Cell #1 → Load Cell #2 → Load Cell #2 → Load Cell #4 → Load Cell #5 → Load Cell #6
۵	2832.5 (12.600)	18.000 0.709	39.000 1.535			9	2832.5 (12.600)	278.592 (1.239)		441.004 (1.962)		_``	1214.576 (5.403)	43%	
kN) 5	2317.5 (10.309)	16.000 0.630	30.000 1.181			S		187.802 (0.835)	<u> </u>	343.716 (1.529) 236.500 (1.052)		-185.331 -(0.824)	1035.858 (4.608)	45%	→ →×<
Applied Load To Panel - lb (kN	1931.3 (8.591)	14.000 0.551	23.000 0.906		Panel - Ib (kN)	4	1931.3 (8.591) each Load Cell - lb (k	142.917 (0.636)	<u> </u>	290.559 (1.292) 190.500 (0.847)		-101.771 -(0.453)	946.889 (4.212)	49%	
Applie 3	1545.0 (6.872)	11.000 0.433	16.000 0.630		Applied Load To Panel - Ib (kN)	3) 1545.0 (6.872) 1931.3 (8.591) Applied Load Recieved at each Load Cell - Ib (kN	116.395 (0.518)	<u> </u>	223.361 (0.994) 136 500 (0.607)		'	799.435 (3.556)	52%	Set-Up #4 Series #7
~	2 1287.5 (5.727)	8.000 0.315	11.000 0.433			2	1287.6) 6.727 dab	(0.468	(0.514)	162.180 (0.721)		7.499 (0.033)	627.338 (2.791)	49%	
	1030.0 (4.582)	6.000 0.236	7.000 0.276			-	1030.0 (4.582)	94.972 (0.422)	_	108.019 (0.480)			473.147 (2.105)	46%	
Force Point # =>		Deflection at Top (mm) = Deflection at Top (in) =	Deflection at Mid-Panel (mm) = Deflection at Mid-Panel (in) =	Load Cell Data		Force Point # =>	Load Cell	1	2	m z	+ L	c 9	Total Load transferred to Post - lb (kN) = [Percentage of Applied Load Received by Post =	Load Cell Readings (lbs)

Deflection Data

Date Tested = 10/19/2004

		Released	0.0 (0.000)	-1.000	-0.039	20.000	0.787													
		9	2832.5 (12.600)	17.000	0.669	36.000	1.417			9	2832.5 (12.600)	Ì	285.733 (1.271)		369.091 (1.642) 260.100 (1.157)	183.202 (0.815)	'	989.266 (4.400)	35%	
	kN)	5	2317.5 (10.309)	15.000	0.591	26.000	1.024			S	2317.5 (10.309)	(178.621 (0.795)		246./30 (1.098) 232.100 (1.032)		-187.474 -(0.834)	850.505 (3.783)	37%	au - الج
_	Applied Load To Panel - Ib (kN)	4	1931.3 (8.591)	13.000	0.512	20.000	0.787		Panel - Ib (kN)	4	1931.3 (8.591)	C	107.214 (0.477)	-	210.623 (0.937) 199.100 (0.886)			759.768 (3.380)	39%	
Date Tested = 10/28/2004	Appli	3	1545.0 (6.872)	10.000	0.394	14.000	0.551		Applied Load To Panel - Ib (kN	3	1545.0 (6.872)	plied Load Recieved at	68.449 (0.304)		165.489 (0.736) 144.100 (0.641)	148.757 (0.662)	-52.493 -(0.233)	620.303 (2.759)	40%	Set-Up #4 Series #8
Dat		2	1287.5 (5.727)	8.000	0.315	11.000	0.433			2	1287.5 (5.727)		67.429 (0.300)		129.383 (0.576) 109.100 (0.485)		-37.495 -(0.167)	515.641 (2.294)	40%	
		L	1030.0 (4.582)	6.000	0.236	6.000				-	1030.0 (4.582)		53.148 (0.236) 76.428 (0.230)		66 100 (0.352)			354.560 (1.577)	34%	→ → → → →
Deflection Data		Force Point # =>		Deflection at Top (mm) =	Deflection at Top (in) =	ection at Mid-Panel (mm) =	Deflection at Mid-Panel (in) =	<u>Load Cell Data</u>		Force Point # =>	:	Load Cell	c	7	<u>ه</u>	- 2	9	Total Load transferred to Post - lb (kN) =	Percentage of Applied Load Received by Post =	
						Defl	ŏ											Total Load trar		Load Cell Readings (lbs)

Deflection Data			Dat	Date Tested = 11/4/2004	11/4/2004						
						Applied Load To Panel - Ib (kN)	inel - Ib (k		-		
Force Point # =>	-		2	3		4		ŝ			eleas
Deflection_at Ton (mm) =	= 1030.0 (4.582) = 6.000	1287.5	5 (5.727) 0.000	1545.0	(6.872) 2 000	1931.3 (8	8.591)	2317.5 (10 16 000	.309)	2832.5 (12.600) 19.000	0.0 (0.000)
Deflection at Top (in) =			0.394	0.472	72	0.591	,	0.630		0.748	0.000
Deflection at Mid-Panel (mm) =		14	14.000	19.000	000	28.000	0	35.000		45.000	29.000
at Mid-Panel (in) =	= 0.315	Ö	.551	0.748	48	1.102		1.378		1.772	1.142
Load Cell Data											
				Applie	ed Load To	Applied Load To Panel - Ib (kN	۲)				
Force Point # =>	-		2	e	~	4		5		9	
	1030.0 (4.582	2) 1287.5	(5.727)	1545.0	(6.872)	1931.3 ((8.591)	2317.5	(10.309)	2832.5 (12.600)	
Load Cell		-	Api	plied Load R	tecieved at	2	ell - Ib (kN	(-		
- c	68.245 (0.304)	4) 82.527	(0.367)	100.889	(0.449)	141.693 (105 104 /	(0.630)	180.458 (0	(0.803) 2	234.523 (1.043)	
4 0		+		100.001	(0.03()					1	
04		-		164.200	(0.730)						
5	40.903 (0.182)	2) 105.486		145.313	(0.646)	182.987 (_		_	254.029 (1.130)	
6	79.275 (0.353	3) 38.566	(0.172)	-33.210	-(0.148)	-125.339 -(-(0.558)	-175.690 -(0	-(0.782) -:	-201.400 -(0.896)	
Total Load transferred to Post - $lb(kN) =$	= 426.903 (1.899)	9) 653.111	(2.905)	765.206	(3.404)	938.302 ((4.174) 1	1045.312 (4	(4.650) 1	1327.032 (5.903)	
Percentage of Applied Load Received by Post =	d 41%	2	51%	20%	%	49%		45%		47%	
				Set-Up #4 Series #9	Series #9						
								• >		**	
			• *								► Load Cell #3
	*		*•								-X-Load Cell #4
	•										-*-Load Cell #5

Force Point #

5 6 Released .5 (10.309) 2832.5 (12.600) 0.0 (0.000 16.000 18.000 0.000 0.000 30.000 35.000 38.000 50.000 1.969 1.378 1.378

Deflection Data

Date Tested = 11/18/2004

רמוס

Deflection Data

Date Tested = 11/24/2004

Deflection Data			Date Tested = 11/30/2004	_							
					Applied I	Applied Load To Panel - Ib (kN	(N)				
Force Point # =>	1 1030.0 1150.0	2 13075 (E737)	3 1646 0 / 6 072)	4 1031 3 / 8 501)	2217E / 10 200 \	6 2822 E / 12 600 \	3000.0 / 13 746)	3247 E / 14 800)	3605.0 / 16.036.V	10 3863 E / 17 191)	11
Deflection at Top (mm) =	00.9		3.000			24.000	_			34.000	-4.0
Deflection at Top (in) =	- 0.236	0.394	0.512	0.669	0.787	0.945	1.063	1.102	1.220	1.339	-0.157
Deflection at Mid-Panel (mm) =	8.000	17.000	26.000	37.000	44.000	53.000	58.000	64.000	71.000	82.000	49.000
Deflection at Mid-Panel (in) =	0.315	0.669	1.024	1.457	1.732	2.087	2.283	2.520	2.795	3.228	1.929
					Amelical and To Devel 16 / LM)	Canol In / LALV					
Force Point # =>	-	2	ę	4	Applied Load 10 F	aliei - IJ (KN) 6	2	8	6	10	
	1030.0 (4.582)) 1287.5 (5.727)	1545.0 (6.872)	1931.3 (8.591)	2317.5 (10.309)	2832.5 (12.600)	3090.0 (13.745)	3347.5 (14.890)	3605.0 (16.036)	3862.5 (17.181)	
Load Cell					Applied Load Recieved at each Load Cell - Ib (kN	ach Load Cell - Ib (kh					
1		31.623		0)	112.212 (0.499)	176.479 (0.785)	196.881	212.183 (0.944)	_)	
2		91.629			177.689					-	
3	_) 183.242 (0.815)			417.936	-		_		_	
4 -	_	114.100	_		220.100					_	
5	0.538 (0.002) 16.069 (0.071)) 5.920 (0.026)) -16.069 -(0.071)	65.122 (0.290) -51.421 -(.0.229.)	-66 419 -(0.663)	203.976 (0.907) -121.054 -(0.538)	243.803 (1.084) -169.262 -(0.753)	286.859 (1.276) -191 759 -(0.853)	312.692 (1.391) -198 186 -(0.882)	364.359 (1.621) -103 914 -(0 462)	422.484 (1.879) 27 853 (0124)	
					100000 1000121				10000		
Total Load transferred to Post - lb (kN) =	- 247.036	(1.099) 410.445 (1.826)	580.235 (2.581)	872.627 (3.882)	1010.859 (4.497)	1234.319 (5.490)		1371.728 (6.102) 1488.800 (6.622)	1729.073 (7.691)	2095.687 (9.322)	
Percentage of Applied Load Received by Post =	24%	32%	38%	45%	44%	44%	44%	44%	48%	54%	
					Set-Up #4 Series #12	2					
1000											
								4			
000 (sql) sf											→ Load Cell #1
gnibse 400							*	*	* :	×	
Page 100 Cell R		• **	***				•		*		
° 001	0	•- • m	- •	- u n	- w		- ~ •	- ω	- •		
-400											
					Force Point #						

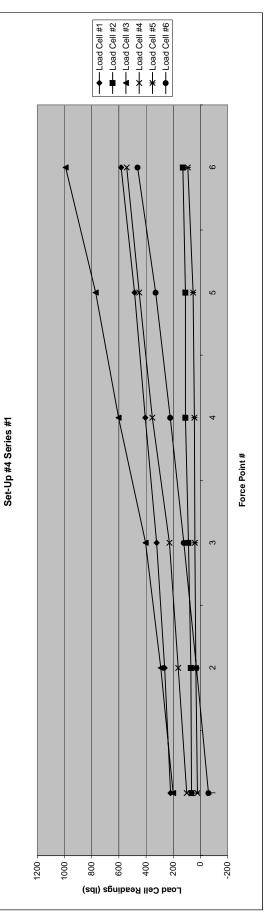
Full Scale Test Results using a Articulating Spreader Frame (Round # 2 Testing) - Set-Up # 4 - Series # 12

FULL HEIGHT PANEL TEST RESULTS (ROUND 1)

SERIES # 1 - # 3

Full Scale Test Results using a Single Vertical Spreader Bar (Round # 1 Testing) - Set-Up # 4 - Series # 1

Deflection Data


			Appl	vpplied Load To Panel - lb (kN)	KN)		
Force Point # =>	1	2	3	4	5	9	Released
	1030.0 (4.582)	1287.5 (5.727)	1545.0 (6.872)	1931.3 (8.591)	2317.5 (10.309)	2832.5 (12.600)	0.0 (0.000)
Deflection at Top (mm) =	16.000	19.000	23.000	28.000	32.000	40.000	5.000
Deflection at Top (in) =	0.630	0.748	0.906	1.102	1.260	1.575	0.197

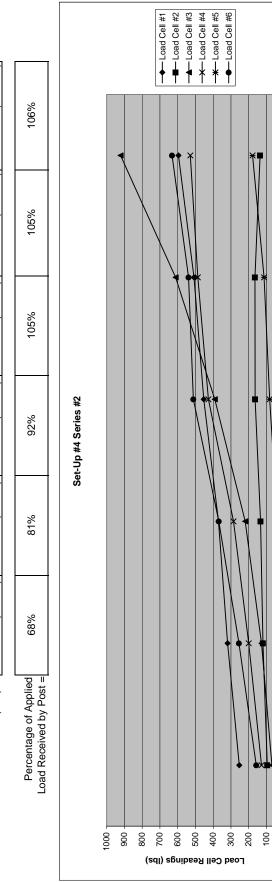
Load Cell Data

					Appli	ed Load Tc	Applied Load To Panel - lb (kN)	(kN)				
Force Point # =>	-			~		3	7	1	4	2	6	
	1030.0	(4.582)	1287.5	(5.727)	1545.0	(6.872)	1287.5 (5.727) 1545.0 (6.872) 1931.3 (8.591) 2317.5 (10.309)	(8.591)	2317.5		2832.5 (12.600)	(12.600)
Load Cell				App	lied Load F	Recieved at	Applied Load Recieved at each Load Cell - Ib (kN)	Cell - Ib (k	(N			
1	219.834	(0.978)	(0.978) 263.699 (1.173) 321.845 (1.432) 405.494 (1.804) 485.063 (2.158) 584.013 (2.598)	(1.173)	321.845	(1.432)	405.494	(1.804)	485.063	(2.158)	584.013	(2.598)
2	64.596	(0.287)		70.165 (0.312)	87.883	(0.391)	87.883 (0.391) 109.347 (0.486)	(0.486)		(0.489)	109.955 (0.489) 128.888 ((0.573)
3	200.994	(0.894)	(0.894) 291.261 (1.296)		403.593	(1.795)	403.593 (1.795) 602.181 (2.679)	(2.679)	770.679	(3.428)	770.679 (3.428) 992.334	(4.414)
4	101.000	(0.449)	163.000 (0.725)	(0.725)	227.900	(1.014)) 227.900 (1.014) 353.900 (1.574) 450.900 (2.006)	(1.574)	450.900		542.900 (2.415)	(2.415)
5	21.420	(0.095)	33.906	33.906 (0.151) 40.042 (0.178)	40.042	(0.178)	44.132 (0.196)	(0.196)	53.604 (0.238)	(0.238)	92.570	(0.412)
9	-59.884	-(0.266)	28.924	(0.129)	122.126	(0.543)	28.924 (0.129) 122.126 (0.543) 221.754 (0.986) 328.882 (1.463) 461.721 (2.054)	(0.986)	328.882	(1.463)	461.721	(2.054)

Total Load transferred to Post - lb (kN) = [547.960 (2.437)] 850.955 (3.785) | 1203.389 (5.353) | 1736.809 (7.726) | 2199.083 (9.782) | 2802.426 (12.466)

	
%66	
95%	
%06	
78%	
66%	
53%	
Percentage of Applied Load Received by Post =	

Full Scale Test Results using a Single Vertical Spreader Bar (Round # 1 Testing) - Set-Up # 4 - Series # 2


Deflection Data

			Ap	Applied Load To Panel - lb (kN)	b (kN)		
Force Point # =>	1	2	3	4	5	6	Released
	1030.0 (4.582)) 1287.5 (5.727)) 1545.0 (6.872)	1931.3 (8.591)	2317.5 (10.309)	2832.5 (12.600)	0.0 (0.000)
Deflection at Top (mm) =	20.000	23.000	27.000	31.000	35.000	40.000	3.000
Deflection at Top (in) =	0.787	0.906	1.063	1.220	1.378	1.575	0.118

Load Cell Data

		(12.600)		(2.650)	(0.607)	(4.100)	(2.351)	(0.795)	(2.808)
	9	2832.5		595.643	136.482	921.625	528.600 (2.351)	178.789	631.304
		(10.309)		(2.259)	(0.732)	(2.721)	(2.164)	(0.504)	(2.398)
	5	.0 (4.582) 1287.5 (5.727) 1545.0 (6.872) 1931.3 (8.591) 2317.5 (10.309) 2832.5 (12.600)	(kN)	507.913	95.071 (0.423) 119.573 (0.532) 132.938 (0.591) 164.021 (0.730) 164.628 (0.732) 136.482 (0.607)	611.709	128.300 (0.571) 199.600 (0.888) 285.600 (1.270) 426.600 (1.898) 486.600 (2.164)	0.000 (0.000) 16.792 (0.075) 39.073 (0.174) 81.806 (0.364) 113.344 (0.504) 178.789	99 (0.702) 255.285 (1.136) 368.841 (1.641) 511.321 (2.274) 539.174 (2.398) 631.304 (2.808)
b (kN)	1	(8.591)	Applied Load Recieved at each Load Cell - Ib (kN)	(2.014)	(0:730)	(1.739)	(1.898)	(0.364)	(2.274)
Applied Load To Panel - Ib (kN)	7	1931.3	at each Loa	452.827	164.021	391.056	426.600	81.806	511.321
lied Load T	3	(6.872)	Recieved	(1.647)	(0.591)	(0.977)	(1.270)	(0.174)	(1.641)
App		1545.0	plied Load	370.198	132.938	219.549	285.600	39.073	368.841
	2	(5.727)	Ap	(1.420)	(0.532)	(0.571)	(0.888)	(0.075)	(1.136)
		1287.5		319.193	119.573	128.279	199.600	16.792	255.285
	1	(4.582)		(1.125)	(0.423)	(0.311)	(0.571)	(0.000)	(0.702)
		1030.0		252.885	95.071	69.806	128.300	0.000	157.799
	Force Point # =>		Load Cell	1	2	3	4	5	6

Total Load transferred to Post - Ib (kN) = 703.862 (3.131) 1038.722 (4.620) 1416.199 (6.300) 2027.631 (9.019) 2423.369 (10.780) 2992.442 (13.311)

9

S

4

ო

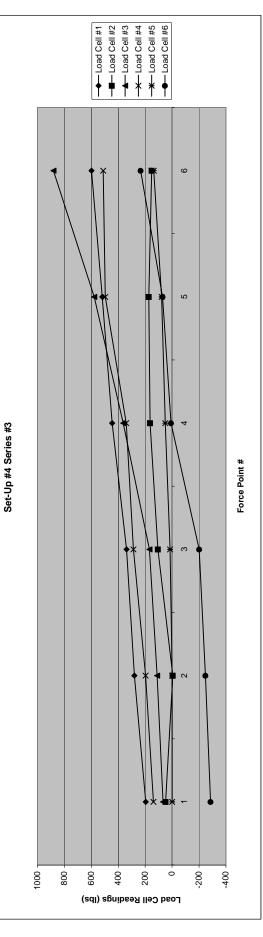
2

0

Force Point #

Full Scale Test Results using a Single Vertical Spreader Bar (Round # 1 Testing) - Set-Up # 4 - Series # 3

Deflection Data


						Applie	<pre>\pplied Load To Panel - lb (kN)</pre>	Panel - Ib ((kN)					
Force Point # =>	1		2			~	4			2	e		Rel	teleased
	1030.0	(4.582)	1287.5	(5.727)	1545.0	287.5 (5.727) 1545.0 (6.872) 1931.3 (8.591)	1931.3	(8.591)	2317.5	2317.5 (10.309)	2832.5	2832.5 (12.600)	0.0	(0.000)
Deflection at Top (mm) =	18.0	00	21.000	000	24.(24.000	30.000	000	33.4	33.000	38.(38.000	1.	.000
Deflection at Top (in) =	0.7(J9	0.827	27	0.9	0.945	1.181	81	1.2	.299	1.4	1.496	0.	0.039

Load Cell Data

Force Point #=>1233456 1030.0 (4.582) 1287.5 (5.727) 1545.0 (6.872) 1931.3 (8.591) 2317.5 (10.309) 2832.5 (12.600) Load Cell 105.759 (0.871) 1287.6 (5.727) 1545.0 (6.872) 1931.3 (8.591) 2317.5 (10.309) 2832.5 (12.600) Load Cell 195.759 (0.871) 279.408 (1.243) 338.575 (1.506) 444.666 (1.978) 518.114 (2.305) 598.703 (2.663) 2 47.586 (0.212) -5.974 $-(0.027)$ 105.297 (0.468) 163.515 (0.770) 150.859 (0.671) 3 67.299 (0.229) 111.430 (0.496) 188.599 (0.770) 330.770 157.809 (2.770) 880.704 (3.918) 4 138.800 (0.617) 196.800 (0.85) 286.800 (1.276) 340.500 (1.515) 495.800 (2.770) 880.704 (3.918) 5 -0.323 -0.001 -0.323 -0.001 -0.323 -0.001 -0.323 -0.001 -247.465 -1.001 -0.033 77.04 (0.333) 77.04 (0.356) (1039) 6 -286.031 -1.0271 -2496 -0.033 77.04 -0.335 (10.39) -0.335 (10.39) 7 -0.323 -0.033 77.01 -0.033 7					Applie		Applieu Loau To Pariei - ID (KN)	(KN)				
	Force Point # =>	٢		0	3		7	+	2	2	9	
	10	30.0 (4.582)	1287.5	(5.727)	1545.0	(6.872)	1931.3	(8.591)	2317.5	(10.309)	2832.5	(12.600
1 195.759 (0.871) 279.408 (1.243) 338.575 (1.506) 444.666 (1.978) 518.114 (2.305 2 47.586 (0.212) -5.974 -(0.027) 105.297 (0.468) 163.515 (0.777) 173.133 (0.770) 3 67.299 (0.212) -5.974 -(0.027) 168.599 (0.750) 363.174 (1.615) 577.809 (2.570) 4 138.800 (0.617) 196.800 (0.875) 286.800 (1.276) 340.500 (1.515) 495.800 (2.205 5 -0.323 -(0.001) -0.323 -(0.001) -0.323 -(0.011) -0.323 (0.064) 50.052 (0.223) 77.285 (0.345 6 -286.031 -(1.011)<-201.400	Load Cell			App	lied Load R	ecieved at	t each Load	Cell - lb (kN)			
2 47.586 (0.212) -5.974 -(0.027) 105.297 (0.468) 163.515 (0.727) 173.133 (0.770 3 67.299 (0.299) 111.430 (0.496) 168.599 (0.750) 363.174 (1.615) 577.809 (2.570 4 138.800 (0.617) 196.800 (0.875) 286.800 (1.276) 340.500 (1.515) 495.800 (2.205 5 -0.323 -(0.001) -0.323 -(0.001) 14.424 (0.064) 50.052 (0.223) 77.285 (0.345 6 -286.031 -(1.277) -247.465 -(1.011) -201.400 -0.845) 74.99 (0.033) 70.704 (0.315	1 19	5.759 (0.871)	279.408	(1.243)	338.575	(1.506)	444.666	(1.978)	518.114	(2.305)	598.703	(2.663)
3 67.299 (0.299) 111.430 (0.496) 168.599 (0.750) 363.174 (1.615) 577.809 (2.570 4 138.800 (0.617) 196.800 (0.875) 286.800 (1.276) 340.500 (1.515) 495.800 (2.205 5 -0.323 -(0.001) -0.323 -(0.001) 14.424 (0.064) 50.052 (0.223) 77.285 (0.345) 6 -286.031 -(1.201) -247.465 -(1.101) -201.400 -0.333 70.704 (0.315)	2 47	7.586 (0.212)	-5.974	-(0.027)	105.297	(0.468)	163.515	(0.727)	173.133	(0.770)	150.859	(0.671)
4 [138.800 (0.617) 196.800 (0.875) 286.800 (1.276) 340.500 (1.515) 495.800 (2.205 5 -0.323 -(0.001) -0.323 -(0.001) 14.424 (0.064) 50.052 (0.223) 77.285 (0.345 6 -286.031 -(1.272) -247.465 -(1.101) -201.400 -(0.896) 7.499 (0.033) 70.704 (0.355	3 67	7.299 (0.299)	111.430	(0.496)	168.599	(0.750)	363.174	(1.615)	577.809	(2.570)	880.704	(3.918)
50.323 -(0.001) -0.323 -(0.001) 14.424 (0.064) 50.052 (0.223) 77.285 (0.344 6 -286.031 -(1.272) -247.465 -(1.101) -201.400 -(.0.896.) 7.499 (0.033) 70.704 (0.315	4 135	8.800 (0.617)	196.800	(0.875)	286.800	(1.276)	340.500	(1.515)	495.800	(2.205)	511.800	(2.277)
6 -286.031 -(1.272) -247.465 -(1.101) -201.400 -(.0.896.) 7.499 (.0.033.) 70.704 (.0.315	5	.323 -(0.001)	-0.323	-(0.001)	14.424	(0.064)	50.052	(0.223)	77.285	(0.344)	136.056	(0.605)
	6 -28	6.031 -(1.272)	-247.465	-(1.101)	-201.400	-(0.896)	7.499	(0.033)	70.704	(0.315)	233.539	(1.039)

Total Load transferred to Post - lb (kN) = [163.090 (0.725)] 333.876 (1.485) | 712.294 (3.168) | 1369.406 (6.091) | 1912.845 (8.509) | 2511.661 (11.172)

 	r
%68	
83%	
71%	
46%	
26%	
16%	
Percentage of Applied Load Received by Post =	1

JOB NUMBER: 32-78827.2

PAGE: DATE:

1 of 2 November 13, 2006

TESTING OF AB FENCE

Prepared for:

Mr. Rich Lovdal, P.E. Allan Block Corporation 5300 Edina Industrial Blvd., Suite 100 Edina, MN 55439

Prepared By:

Thomas A. Kolden, P.E. Manager of Building Products Testing Construction Materials Engineering Phone: 651-659-7340

Reviewed By:

Brian Amberg Laboratory Supervisor Construction Materials Engineering Phone: 651-659-7259

F:\BMC\2006CME\Specialty\3278827\32-78827.2.dot

Information and statements in this report are derived from material, information and/or specifications furnished by the client and exclude any expressed or implied warranties as to the fitness of the material tested or analyzed for any particular purpose or use. This report is the confidential property of our client and may not be used for advertising purposes. This report shall not be reproduced except in full, without written approval of this laboratory. The recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under Federal Statues including Federal Law Title 18, Chapter 47

Stork Twin City Testing Corporation is an operating unit of Stork Materials Technology B.V., Amsterdam, The Netherlands, which is a member of the Stork Group

JOB NUMBER:	32-78827.2	PAGE:	2 of 2
		DATE:	November 13, 2006

TESTING OF AB FENCE ASSEMBLY

INTRODUCTION:

This report is in reference to testing of an Allan Block AB Fence at their facility on August 16, 2006 and October 10, 2006, as documented in a report entitled "Allan Block AB Fence Testing, Full Scale Panel Test Report, 12x11 Panel with Articulating Spreader Frame," dated November 10, 2006, prepared by Mr. Rich Lovdal of Allan Block Corporation (copy attached). Stork Twin City Testing Corporation (Stork TCT) witnessed some of the testing described in Mr. Lovdal's report. The discussion that follows pertains to that testing. Our work was requested by Mr. Lovdal on or about November 23, 2004 and authorized by Mr. Tim Bott of Allan Block Corporation, on March 7, 2005. The scope of our testing work was as follows:

- Travel to the Allan Block Corporation test laboratory in Edina, Minnesota to monitor the testing of the AB Fence. The tested AB Fence panel assembly was constructed previous to the witnessed testing: Stork TCT personnel did not witness the construction of the tested specimen. Allan Block Corporation personnel also prepared the testing apparatus, which Stork TCT personnel observed at the time of witnessed testing.
- 2. Witness all testing of the AB Fence panel assembly on August 16, 2006 and again on October 10, 2006, and verify the data collected.
- 3. Review the final test report prepared by Allan Block Corporation personnel, and prepare a suitable cover letter for the purpose of verifying the test data presented therein.

CONCLUSION:

The description of AB Fence panel assembly, the test procedure and equipment described in Appendix A, as well as the test data listed for Series 2 through 7 in Appendix B of Mr. Lovdal's report of November 10, 2006, is consistent with the observations made by Stork TCT personnel. Review and validation of the remainder of the report, its discussion and/or conclusions, as well as other test data presented are beyond the Stork TCT's scope of services.

REMARKS:

Should you have any questions concerning this report, or if we may be of further assistance, please contact us at (651) 659-7340.

Information and statements in this report are derived from material, information and/or specifications furnished by the client and exclude any expressed or implied warranties as to the fitness of the material tested or analyzed for any particular purpose or use. This report is the confidential property of our client and may not be used for advertising purposes. This report shall not be reproduced except in full, without written approval of this laboratory. The recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under Federal Statues including Federal Law Title 18, Chapter 47

Allan Block AB Fence Testing

Full Scale Panel Test Report 12x11 Panel with Articulating Spreader Frame

November 10, 2006

Introduction

This report provides the results for the continuing full-scale panel tests preformed on the Allan Block fence panel. All tests were preformed in the Allan Block lab using Allan Block equipment and personnel along with a representative from Stork Twin City Testing (STCT) witnessing and certifying the testing procedures and results. These tests are an extension of the Fence Testing preformed at the University of Calgary in 2003 and the Allan Block/STCT testing preformed in August 2004 and October 2005. The main difference between the previous testing and these is the post spacing was expanded from 7-panel block long (11'-7" (3.54m)) to 11-panel block long (17'-5" (5.32m)).

Figure 1: 11-Panel block long by 12-course tall test panel

Figure 2: Articulating Spreader Frame

Objectives of Test Program

The principle objective of this test is to expand on what was learned in the two prior tests and further understand the added strength and flexibility the dry-stacked units bring to the AB Fence system in longer post spacing configurations. In the Vertical Spreader Bar tests the set up was designed to force a configuration that simulated a typical tributary area distribution by directing the applied load to the bond beams with a single vertical spreader bar. In the 12x7 Panel test an articulating spreader frame was

introduced to evenly distribute the applied force to the test panel. In this 12x11 Panel test the same test procedure and similar articulating spreader frame will be used as in the 12x7 Panel Test except on a longer test panel. Under this setup the eight dry-stacked courses, which accounts for the majority of the tributary area of the panel, along with the two bond beams will be engaged by the spreader frame. This will again provide a more accurate depiction of how the dry-stacked units with a ball and socket configuration receive, distribute and dissipate force. The added benefit of the dry-stacked units to resist applied forces will be the documentation of the force absorption ability of the panel. It was first observed in the Calgary panel testing that a dissipation of applied forces occurred during testing and similar dissipations or reductions were documented in all subsequent full-scale AB Fence panel tests. The expected outcome of these tests will be to verify that similar design load reductions occur in longer panels. These tests will record the applied force from the

Figure 3: In Place Load Cell

hydraulic ram and the received load at the posts using load cells at third points on each post, see Figure #3. For a complete description of the testing frame and equipment used see Appendix A.

By comparing the applied to received, a percentage of loss can be determined. The full panel will be subjected to repeated bending and rebounding. Careful attention will be given to the recording of deflections and rebounds to document the extraordinary plasticity of the bond beams.

Test Procedure and Results

The test procedure is very straightforward and follows the same process set forth in all previous testing. A force is applied to the panel using the hydraulic ram and spreader bar assembly. The load cell readings are recorded and summed together to obtain the total force applied to the posts. The applied forces are based on the standard Wind Stagnation Pressures (q) formula of $q = 0.5 * \rho * V^2$ where q is in lb/ft² (N/m²) and ρ is the average air density in lb/ft³ (kg/m³) and V is the average wind speed in ft/sec (m/sec)

and are tabulated in Table 1 on page 5. The first five tests preformed used the standard bond beam and dry-stacked configuration and were stressed to pressures associated with 100 to 110 mph (161 to 177 kph) winds and then released to zero pressure.

For tests 6 and 7 an intermediate column was cast into the center vertical core of the dry-stacked courses, see Figure #4. To do this, the top bond beam was lifted using the 9ga lifting hooks and the dry-stacked courses were removed in a step fashion towards the center of the panel. The courses were then restacked with a # 4 rebar placed in the center vertical core. The reinforced core was then cast solid with the same fine mix grout used in the casting of the bond beams and consolidated with a vibratory stinger. The top bond beam was then reseated and the rebuilt assembly was allowed to cure for a minimum of 28 days. The intermediate column was installed to remedy large deflections

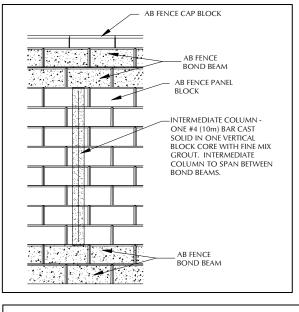


Figure 4: Intermediate Column (Tests 6 and 7 Only)

realized during the first five tests. In those tests the entire panel carried the applied load well, while also dissipating the load being transferred to the post in similar percentages as seen in the 12x7 Panel test. The major difference was the amount of deflection or bulging which occurred in the dry-stacked courses. This was not unexpected due to the increase in overall panel length from the 12x7 Panel test. It was determined that an intermediate column would greatly reduce the center bulging by adding rigidity to the dry-stacked.

The main question to resolve was whether or not this inclusion would reduce the amount of force dissipation through the Work Energy theory. The results of tests 6 and 7 showed a stiffer panel which transferred more force to the posts and had no negative center bulging. However, the force reductions were still within the scale set forth in the 12x7 Panel test and shown in Table 1 on page 5 of this report. Also the entire panel rebounded without a center budge after the load was removed. Once again, there were no catastrophic failures and after all tests the panel was simply forced back into a vertical position by manually hitting each dry-stacked block that had shifted with a dead blow hammer until they were once again aligned vertically. Much less realigning was required after the intermediate column was cast. Additionally, no dismantling was required and no blocks required replacing due to damage. The results of the tests that followed showed no negative effects in strength or appearance from realigning.

The results of these tests focused on the following:

- Flexibility of the bond beams and dry-stacked units.
- The absorption of force which occurs within the panel.
- The additional strength the ball and socket brings to the whole system.
- The structural enhancement the intermediate column brings to longer panels

The 11-Panel Block long bond beam showed great flexibility and durability throughout the seven tests. They deflected relative to the load applied and at maximum force exceeded 6.5 inches (167 mm) without failure. Each time the load was removed the bond beams relaxed back. After the first test the top bond beam did not rebound back to its full at-rest position. Subsequent tests showed no reduction in capacity and differential at-rest deflection ranging form 9 to 16mm. It was concluded that debris lodged inside the stress cracks, hindering the rebound of the bond beam. Therefore before test 5 was relaxed the cracks were blown out. The resulting differential at-rest deflection was 2mm. At the completion of all seven tests, other than the original stress cracks which appeared after the very first test, both bond beams showed no visible defects or damage. The bond beams reacted exactly how a monolithic concrete beam would react to repeated stress. The stress cracks would open slightly during stressing, which would engage the steel and would close when the load was removed. In total, these bond beams were used and stressed in 7 separate tests in which both bond beams flexed and rebound to near zero deflection.

The absorption of forces is clearly evident in the results from the 18 separate tests tabulated in the 12x7Panel test and in the 7 from this test series. See Appendix B for lab results. In none of these 25 tests did

the applied forces equal the received forces at the post. Structural engineering teaches a standard static approach to applied forces in that "force in equals force out". However, a system of dry-stacked units which have a large selfweight and a ball and socket configuration, such as the AB panel blocks have, brings a dynamic variable to the static equation. This dynamic variable can best be described as Work Energy. Work is defined as a force (wind) acting upon an object (the panel block's ball and socket joint) to cause a displacement, see Figure 5. In the Allan Block Fence panel there are two forms of work energy being developed. First is the external work which is simply the deflection of the entire panel due to the wind force. The second occurs internally in the ball and socket joint. As the wind load is applied, the running bonds of the dry stacked block try and deflect away from the force laterally, but the socket resists any deflection due to its natural conical locking configuration. The selfweight of all the courses above a particular joint provides the downward force which serves to stiffen the joint. Thus, the lower the joint is within the panel the greater the internal resisting forces within that socket. Therefore, most of the deflection within the panel occurred in the upper half.

The internal Work occurs when the applied force becomes great enough to overcome the frictional interaction within the socket, forcing deflection. There are two forms of deflection which could occur. The first is a purely horizontal translation, but this could only occur if the bottom tension edge of the panel block were to shear off horizontally allowing the socket to release, see Figure 6. This form of deflection did not occur due to the internal strength of each

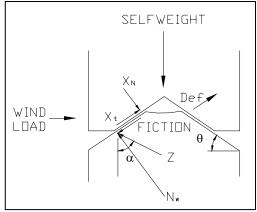
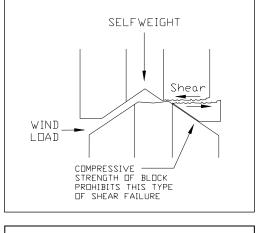



Figure 5: Work Energy Free-Body Diagram

block. The shear strength of a block is directly related to the compression strength, therefore the stronger the block the more resistant to shear failures and the stronger the ball and socket can become.

The second form of deflection, which did occur, was a movement along the natural sloped plane of the socket which provided displacement in an upward and lateral direction, variable Xt in Figure 5. Each movement when it occurred would be very small because the pressure within the socket would release and the fictional interaction would once again be greater than the applied load. Once the force was built up enough to overcome the internal resisting forces another deflection would occur. Each time an internal deflection occurred a certain amount of force was absorbed into the joint causing a reduction of applied forces to the posts. In all test this was true, the least amount of transferred load occurred in the lowest pressures. This is due to the large number of areas within the panel that had the ability to shift or deflect early on. At higher pressures the number of joints having the ability to adjust decreases because movement has already occurred making the joint more rigid, which causes the amount of force received by the post to increase. The results showed that at low pressures the received loads are quite small, lowest recorded value was 19% in Test Series #7. The largest percentage was 66% in Test Series #6. This number is believed to be slightly skewed due the repeated spiking of load cell #3. In all tests, load cell #3 began to spike at 90 to 100mph loads which caused a percentage increase. In the last test, #7, load cell #3 reacted the same until after achieving the 120mph mark, where it showed a 40% reduction from the 110mph mark. The internal structure of the dry-stacked units must have shifted, relieving the stress at #3, resulting in a percentage of applied force of 56% at 120mph. See data tables in Appendix B for results from all tests.

The overall deflection of the panel was similar to a plate bending diagram having three ridged edges with the bottom and two sides fixed and the top restrained but allowed to deflect. The bottom bond beam had very little lateral deflection compared to top bond beam because of the additional strength it received from the lower dry stacked course which had the greater selfweight above them. In practical field applications the bottom bond beam would be fully fixed laterally due to its continuous contact with the leveling pad. The deflections of the top and middle sections of the panel were very consistent throughout the tests. As mentioned earlier, the top bond beam deflected and rebound to its near at-rest position after each test. The dry-stacked course however, in the first 5 tests, did not return to a zero deflection once the force was removed. Each time an internal deflection occurred due to the work energy, the joint was placed in a new at-rest state. When the load was removed, the bond beams had tension in the steel which pulled them back to zero, but the dry-stacked had only compression built up in the back faces of the block which when released had no ability to pull the blocks back. Therefore, the maximum differential deflection between the top bond beam and the middle dry-stacked is generally equal to the total deflection or maximum bow of the center dry stacks after the load is removed. Before the next test was conducted, the dry stacked units were forced back to a vertical position for retesting. In tests 6 and 7 the intermediate column was introduced. Then virtually the entire panel rebounded with no realignment required to run the next test. At the completion of the 7th test the panel is without damage and stands ready for continued testing as required.

Conclusions and Recommendations

The following are a list of conclusions formulated from physical data and visual observation during testing:

• The Allan Block Fence panel has the ability to flex and absorb forces through the principle of Work Energy. The ability of the panel to absorb applied forces effectively act to resist the force and thus can be used in combination with the bond beam and post capacities to resist the applied loads. The net effect is that the structural posts can carry more tributary area which allows the posts to be spaced further apart and or less steel to be used within them.

- The AB Fence panel's ball and socket configuration becomes stronger as more courses are added to the panel by adding more selfweight with each course. The selfweight provides a downward force which converts the compressive stress of the block into a shear resisting mechanism which provides both the flexibility to the system at lower forces and the rigid, strengthening effect at higher forces. The net effect of considering the strength of the ball and socket in the design is the reduction of the number of required bond beams.
- The AB Panel bond beam, when constructed with sand mix grout and vertical stirrups as recommended by Allan Block, provides an incredible capacity to resist lateral forces while remaining plastic enough to rebound 100% from repeated deflection.
- The AB Panel bond beam while subjected to repeated horizontal deflections and rebounds showed no vertical sag of any measurable amount.
- The AB Panel bond beam is a composite beam that functions as a monolithic concrete beam. That is, the stressed beam cracked where expected, at the mid-span and not along the joints of the panel block. At the conclusion of testing all panel block of the bond beams were fully connected to the course above with no visible signs of distress other than the rebounded hairline cracks at mid span.
- If after large forces the dry-stacked panel blocks have deflected, their flexibility allows for them to be forced back into a plumb position without any damage.
- The introduction of an Intermediate Column adds to the stability of longer panels while continuing to allow the remaining dry-stacked units to flex and absorb forces through the principle of Work Energy.

The following Table represents the recommended force reductions based on the test results from these current tests and the 12x7 Panel tests. These reductions should only be applied to the design force acting on the posts. These values are limited to the design of the cantilever moments for fences of 8 ft (2.4 m) in height with no intermediate bond beams.

TABLE 1		Design Wir	nd Speeds and	Stagnation F	ressures	
mph	70	80	90	100	110	120
(kph)	(112)	(129)	(145)	(161)	(177)	(193)
Pressure lb/ft^2	9.45	12.3	15.6	19.2	23.25	27.68
(kPa)	(0.45)	(0.59)	(0.75)	(0.92)	(1.113)	(1.325)
		Percentag	ge of Design Fo	orce For Post	Design	
% *	50	55	65	70	80	90
 Percent values ar 	e a conservat	ive reduction ba	ased on test re	sults		

APPENDIX A

Test Frame and Equipment

Test Frame and Equipment

The test panel was made up of two 11-panel block long bond beams approximately 17'-5" (5.32m) long with 8 dry-stacked courses separating them. The bond beams were situated in a typical field condition with one forming the first two courses and the other forming the top two courses. The total panel height was 12 courses or 8'-0" (2.44 m), see Photos A1 - A4. The bottom bond beam was precast at an earlier date, than lifted and set on top of a spacer block at each post. This was done to simulate the bottom bond beam free spanning from pier to pier. These bond beams consisted of two courses of standard panel block units, with a #4 (10M) horizontal rebar centered between the courses, and 9 ga. (3.5 mm) wire stirrups in every other block core and a sand mix grout tested at 3100 psi (21.37 MPa) at 28 day strength, vibrated in all cores. The posts were cast at 13 courses high to allow for the placement of the spacer block at the base and the full 12 course tall test panel. Vertical wood beams were used at each post to transfer all loads evenly to the post with the intent of having them act as a self-reacting load frame. The horizontal steel beam was suspended at the mid height of the panel, allowing the ram to remain in place during stressing. The Ram was placed at the center point of the panel with the articulating spreader frame attached to the end to distribute the applied forces across the height and width of the panel see Figure 2 on page 1. To record the received forces 3-1000 lb load cells were placed between the panel and post lip at each post, see Figure 3 on page 1. Deflection was measured using a string line transducer recording millimeters of movement. The devices were fixed to the mid-point of the top and bottom bond beams, and the mid-point of the center dry-stacked units, see Figure A1. A switch box that allows up to 10 load cells and 5 deflection transducers powers both the load cells and the deflection transducer. The Switch box sends a voltage signal to the voltmeters showing either pounds of force or millimeters of deflection see Figure A2. All applied forces come from a SPX Power Team 25 ton hydraulic ram and hand operated pump see Figures A3 and A4. In all 7 tests a 10,000 pound (44.82 kN) load cell was attached to the end of the ram to provide a highly accurate measure of the applied force, see Figure A4. The results of all individual tests can be found in Appendix B.

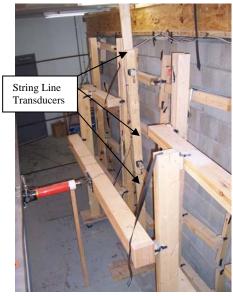


Figure A1: String Line Transducers

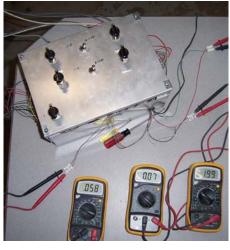


Figure A2: Switch Box and Volt Meters

Figure A3: SPX Hydraulic Hand

Figure A4: Hydraulic Ram

Photo A1: Full-Scale Set-up #4

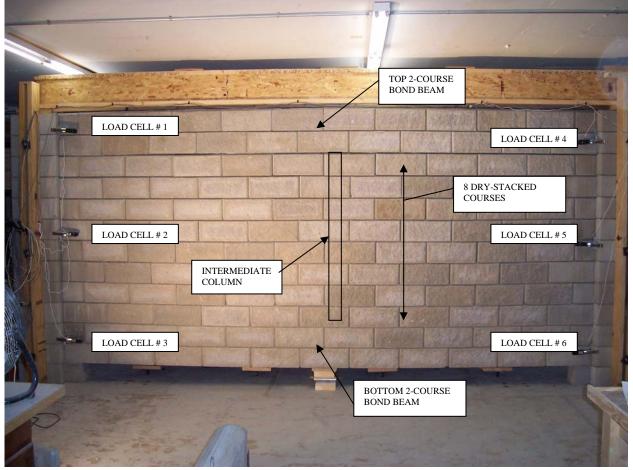
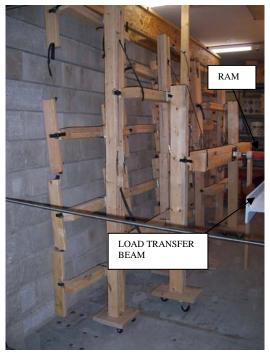



Photo A2: Beam, Ram and Spreader Frame

Photo A3: Spreader Frame Assembly

Photo A5: Spreader Frame Assembly and Block Flexing During Stressing

Photo A4: Panel During Stressing

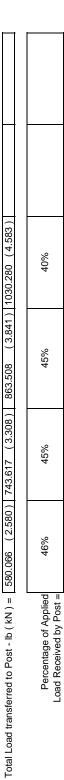
APPENDIX B

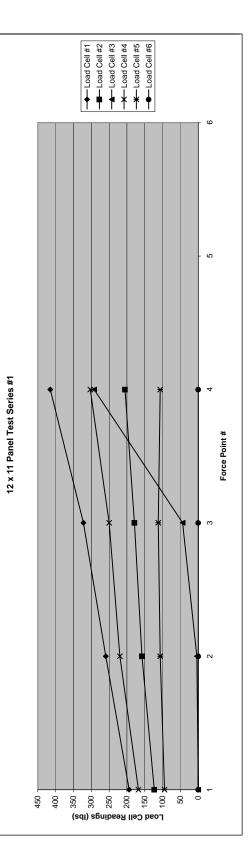
Test Result Data

12x11 FULL HEIGHT PANEL TEST RESULTS

SERIES # 1 - # 7

Full Scale Test Results using a Articulating Spreader Frame (12 x 11 Panel) - Series # 1


Deflection Data


8/16/2006

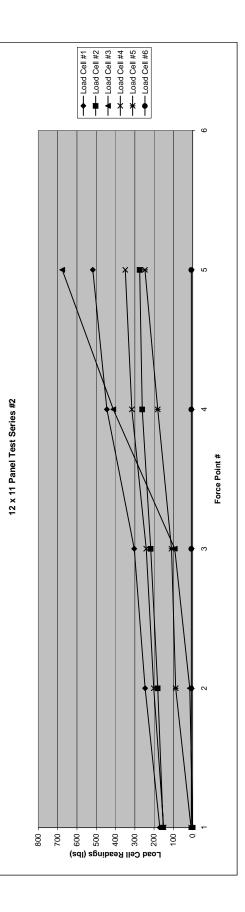
			Applied	Applied Load TO Pariel - ID (KN)	N)
Force Point # =>	Ļ	2		4	
	1260.0 (5.605)	1640.0 (7.295)	63)	2555.0 (11.365)	
258.000		293.000	302.000	326.000	
Deflection at Top (mm) =	-258.000	35.000		68.000	
Deflection at Top (in) =	-10.157	1.378	1.732	2.677	
210.000		243.000	253.000	278.000	
Deflection at Mid-Panel (mm) =	-210.000	33.000	43.000	68.000	
Deflection at Mid-Panel (in) =	-8.268	1.299	1.693	2.677	
196.000		217.000	224.000	234.000	
Deflection at Bottom (mm) =	-196.000	21.000	28.000	38.000	
Deflection at Bottom (in) =	-7.71	0.827	1.102	1.496	

Load Cell Data

		5)	(kN)	()	(1	(8	(8	(1	((
kN)	4	(11.36	Cell - Ib	(1.847	(0.914	(1.298	(1.348	(0.474	(0.000
Applied Load To Panel - Ib (kN)		2555.0	each Load	415.185	205.532	291.863	303.000	106.563	0.000
ed Load To	8	(8.563)	ecieved at	(1.434)	(0.797)	(0.196)	(1.112)	(0.498)	(0.000)
Applie		1925.0 (8.563) 2555.0 (11.365	Applied Load Recieved at each Load Cell - Ib (kN)	322.355 (1.434) 415.185 (1.847)	179.208 (0.797) 205.532 (0.914)	44.130 (0.196) 291.863 (1.298	250.000 (1.112) 303.000 (1.348	111.945 (0.498) 106.563 (0.474	0.000 (0.000) 0.000 (0.000
	2	1260.0 (5.605) 1640.0 (7.295)	App	193.821 (0.862) 259.108 (1.153)	(0.703)	(0.018)	(0.979)	(0.474)	0.000 (0.000) 0.000 (0.000)
		1640.0		259.108	123.522 (0.549) 157.946 (0.703)	0.000 (0.000) 4.012 (0.018)	168.000 (0.747) 220.000 (0.979)	94.723 (0.421) 106.563 (0.474)	0.000
	1	(5.605)		(0.862)	(0.549)	(0.000)	(0.747)	(0.421)	(0.000)
		1260.0		193.821	123.522	0.000	168.000	94.723	0.000
	Force Point # =>		Load Cell	+	2	3	4	5	9

) - Series # 2	
12 x 11 Panel	
Spreader Frame (
a Articulating	
Test Results using	
Full Scale	

Ita	
õ	
S	
Ë	
မ	
efl	
۵	


8/16/2006

			Appliec	Applied Load To Panel - Ib (kN	kN)	
Force Point # =>	Ļ	2	3	7	5	
	1260.0 (5.605)	1640.0 (7.295)	1925.0 (8.563)	365)	2850.0 (12.677)	
260.000	291.000	307.000	317.000	343.000	374.000	
Deflection at Top (mm) =	31.000	47.000	57.000	83.000	114.000	
Deflection at Top (in) =	1.220	1.850	2.244	3.268	4.488	
223.000	249.000	264.000	274.000	302.000	340.000	
Deflection at Mid-Panel (mm) =	26.000	41.000	51.000	000'62	117.000	
Deflection at Mid-Panel (in) =	1.024	1.614	2.008	3.110	4.606	
195.000	212.000	222.000	227.000	241.000	261.000	
Deflection at Bottom (mm) =	17.000	27.000	32.000	46.000	66.000	
Deflection at Bottom (in) =	0.669	1.063	1.260	1.811	2.598	

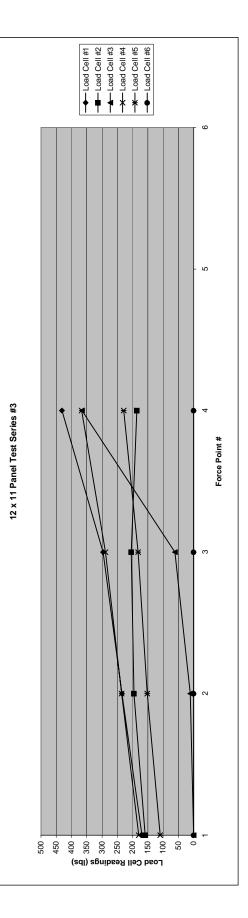
Load Cell Data

		(12.677)		(2.305)	(1.221)	(3.007)	(1.552)	(1.101)	(0.030)
	E)	2850.0	kN)	518.216	274.381	675.999	349.000	247.570	6.749
kN)	+	(11.365)	Cell - Ib ((1.978)	(1.162)	(1.829)	(1.401)	(0.804)	(0:030)
anel - Ib (7	2555.0	each Load	444.768	261.219	411.216	315.000	180.834	6.749
Applied Load To Panel - Ib (kN		(8.563)	ecieved at e	(1.348)	(0.968)	(0.415)	(1.072)	(0.488)	(0:030)
Applied	3	1925.0 (8.563) 2555.0 (11.365) 2850.0 (12.677	Applied Load Recieved at each Load Cell - Ib (kN	[70.358 (0.758)] 246.867 (1.098)] 302.973 (1.348)] 444.768 (1.978)] 518.216 (2.305	152.884 (0.680) 181.233 (0.806) 217.682 (0.968) 261.219 (1.162) 274.381 (1.221	93.276 (0.415) 411.216 (1.829) 675.999 (3.007	241.000 (1.072) 315.000 (1.401) 349.000 (1.552	8.288 (0.037) 88.264 (0.393) 109.792 (0.488) 180.834 (0.804) 247.570 (1.101	6.749 (0.030) 6.749 (0.030) 6.749 (0.030
		(7.295)	Appl	(1.098)	(0.806)	(0.067)	(0.899)	(0.393)	(0.030)
	2	1260.0 (5.605) 1640.0 (7.295)		246.867	181.233	0.000 (0.000) 15.044 (0.067)	50.000 (0.667) 202.000 (0.899)	88.264	6.749 (0.030) 6.749 (0.030)
		(5.605)		(0.758)	(0.680)	(0.000)	(0.667)	(0.037)	(0.030)
	,	1260.0		170.358	152.884	000'0	150.000	8.288	6.749
	Force Point # =>		Load Cell	L	2	3	4	5	9

1389.167 (6.179)	49%
1201.821 (5.346)	47%
447 (3.876)	45%
871.	
(3.195)	44%
718.364	4
481.530 (2.142)	38%
Total Load transferred to Post - Ib (kN) = $\begin{bmatrix} \\ \end{bmatrix}$	Percentage of Applied Load Received by Post =

~	
#	
S	
rie	
Se	
ï	
ne	
a	
Ч Р	
Ť.	
Ň	
-	
) e	
Ĕ	
ra	
Ē	
lei	
ac	
J.	
S	
bi	
tir	
alı	
<u>ic</u>	
T	
a /	
0	
ŝin	
ŝ'n	
ts	
ŝul	
es	
R	
est	
Ĕ	
ale	
ő	
5	
5	
щ	

ta
a
ç
.0
t
ð
Ĕ
പ്പ


8/16/2006

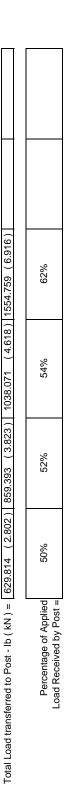
			Appliec	Applied Load To Panel - Ib (kN	(N)	-
Force Point # =>	1	2	3	4		
	1260.0 (5.605)	1640.0 (7.295)	1925.0 (8.563)	2555.0 (11.365)		-
276.000	315.000	328.000	339.000	366.000		-
Deflection at Top (mm) =	39.000	52.000	63.000	000.06		-
Deflection at Top (in) =	1.535	2.047	2.480	3.543		-
						r
254.000	289.000	302.000	314.000	354.000		—
Deflection at Mid-Panel (mm) =	35.000	48.000	60.000	100.000		-
Deflection at Mid-Panel (in) =	1.378	1.890	2.362	3.937		-
						r
196.000	214.000	223.000	230.000	245.000		-
Deflection at Bottom (mm) =	18.000	27.000	34.000	49.000		-
Deflection at Bottom (in) =	0.709	1.063	1.339	1.929		-
						r

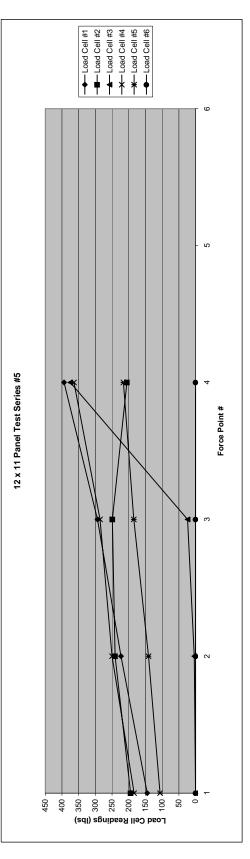
Load Cell Data

Applied Load To Panel - Ib (kN)	3 4 4	1260.0 (5.605) 1640.0 (7.295) 1925.0 (8.563) 2555.0 (11.365)	d Load Recieved at each Load Cell - Ib (kN)	296.852 (1.320) 431.507 (1.919)	204.520 (0.910) 186.295 (0.829)	61.181 (0.272) 366.083 (1.628)	289.000 (1.286) 367.000 (1.632)	181.910 (0.809) 229.272 (1.020)	0:000 (0:000) 0:000 (0:000)
	2	1640.0 (7.295	Load Cell Applied Load Recieved at each Load Cell - Ib (kN) 1 169.338 0.753) 234.625 (1.044) 296.852 (1.320) 431.507 (1.919) 2 2 158.959 0.7077 195.408 0.869) 204.520 0.910) 186.295 0.829) 2 3 0.000 0.0000 11.033 0.049) 61.181 0.272 366.083 1.628) 2 4 180.000 0.801 236.000 (1.050) 289.000 (1.286) 367.000 1.632 6 5 109.792 0.488 151.771 0.667 181.910 0.809 229.272 1.020 6 6 0.000 6 6 0.000 0.000 0.000 6 0.000						
	1	1260.0 (5.605)		Load Cell Applied Load Recieved at each Load Cell - lb (kN) 1 169.338 (0.753) 234.625 (1.044) 296.852 (1.320) 431.507 (1.919) 2 158.959 (0.707) 195.408 (0.869) 204.520 (0.910) 186.295 (0.829) 3 0.000 (0.000) 11.033 (0.049) 61.181 (0.272) 366.083 (16.28) 4 180.000 (1.000) (0.011) 236.000 (1.260) 289.000 (1.628) 5 5 109.792 (0.488) 151.771 (0.675) 189.900 (1.200) (1.632) 6 6 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 <					
	Force Point # =>		Load Cell	~	2	3	4	5	9

1214.074 (5.400)	48%
(4.325)	%
972.282	519
(3.638)	%
817.804	20%
(2.749)	%
618.089	49%
Total Load transferred to Post - Ib (kN) = $\begin{bmatrix} \\ \end{bmatrix}$	Percentage of Applied Load Received by Post =

																							→ Load Cell #1	Load Cell #3 X-Load Cell #4	-*Load Cell #5			9
4 555.0 (11.365.)	000	86.000 3.386	315 000	94.000	3.701 3.701	249.000	-2.000 -0.079		nel - Ib (kN)	ব	ch Load Cell - Ib (kN)	96.823 (1.765)	<u> </u>				00.484 (5.785)	51%	-								-	<u>م</u>
3 / p	(200.0)	61.000 2.402	342 000	61.000	2.402	232.000	-19.000 -0.748		Applied Load To Pa	3 (8563)	ed Load Recieved at eac	279.510 (1.243) 3	(0.743)	(0.1.16)	(1.303)	(0.000)	978.528 (4.353) 13	51%		Panel Test Series #4		×					•	- Force Doint #
2	- 00.4	51.000 2.008	000 002	49.000	1.929	225.000	-26.000 -1.024			N	67.1	(1.02	<u> </u>				798.470 (3.552)	49%		12 x 11 F				***			4.	ι m
1	000.306.000								,	1	-	0	0)			0)	(2	49%										
Force Point # =>	273.000	Deflection at Top (mm) = Deflection at Top (in) =	251 000	Deflection at Mid-Panel (mm) =	Deflection at Mid-Panel (in) =	196.000	Deflection at Bottom (mm) = Deflection at Bottom (in) =	Load Cell Data			Load Cell		20	, n	4 v	0 0	.oad transferred to Post - Ib (kN) =	Percentage of Applied Load Received by Post =							* **		-	7
	1 2 3 4 4000 (F COF) 4040 (7 DOF) 4005 0 (9 COS) 9 7 7	1 2 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 334.000 334.000 334.000	1 2 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 334.000 334.000 334.000 33.000 51.000 61.000 61.000 1.299 2.008 2.402	1 2 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 334.000 61.000 61.000 33.000 51.000 61.000 61.000 01.000 1.299 2.008 2.402 24.000 24.000	1 2 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 334.000 334.000 61.000 33.000 51.000 61.000 61.000 24.000 1.299 2.008 2.402 312.000 312.000 33.000 49.000 61.000 61.000	1 2 3 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 334.000 334.000 61.000 33.000 51.000 61.000 61.000 61.000 1.299 2.008 2.402 24.402 30.000 49.000 61.000 1.000 30.101 1.929 2.402 2.402	1 2 3 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 334.000 61.000 61.000 33.000 51.000 61.000 61.000 61.000 1299 2.008 2.402 24.000 24.000 33.000 61.000 61.000 61.000 24.000 1299 2.008 2.402 24.000 24.000 30.000 49.000 61.000 61.000 24.000 30.000 49.000 61.000 61.000 24.02 30.000 23.000 225.000 2.402 2.402	1 2 3 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 334.000 334.000 61.000 33.000 51.000 51.000 61.000 61.000 1.299 2.008 2.402 2402 281.000 300.000 49.000 61.000 30.000 49.000 61.000 61.000 1.181 1.929 2.402 2.402 31.181 1.929 2.402 61.000 31.000 29.000 61.000 2.402 31.181 1.929 2.402 2.402 31.181 1.929 2.402 2.402 31.000 -33.000 61.000 -1.400 -1.400 -1.496 -1.024 -0.748 -0.748	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 334.000 344.000 344.000 33.000 51.000 61.000 1000 2402 33.000 51.000 51.000 61.000 2402 33.000 49.000 61.000 312.000 30.000 49.000 61.000 1000 31.181 1.929 2.402 31.181 1.929 2.402 31.181 1.929 2.402 31.181 1.929 2.402 31.181 1.929 2.402 31.196 -1.024 2.402 -1.1496 -1.024 -0.748	1 2 3 1260.0 (5.605) 1640.0 (7.295) 1925.0 (8 306.000 324.000 61.000 61.000 61.000 33.000 51.000 61.000 61.000 33.000 2.003 2.402 30.000 300.000 312.000 30.000 49.000 61.000 30.000 1.929 2.402 31.1181 1.929 2.402 31.1181 1.929 2.402 31.000 2.000 21.000 31.000 -1.024 -0.748 31.000 -1.024 -0.748 -1.496 -1.024 -0.748 1 1 2 3	1 2 33.000 51.000 610.0 (7.295) 1925.0 (8 306.000 324.000 51.000 61.000 61.000 51.000 61.000 33.000 51.000 51.000 61.000 2.402 33.000 300.000 300.000 61.000 1.299 2.008 30.000 51.000 281.000 300.000 49.000 61.000 30.000 -1.929 2.402 312.000 -2.000 2.402 313.000 -2.000 2.402 -38.000 -0.000 -1.024 -0.748 -1.496 -1.024 -0.748 1181 1.024 -0.748 1181 1.024 -0.748 1181 1.024 -0.748 1181 1.024 -0.748	1 2 33.000 51.000 610.0 334.000 33.000 51.000 61.000 61.000 61.000 33.000 51.000 61.000 61.000 33.000 51.000 61.000 2.402 33.000 49.000 61.000 2.402 33.000 300.000 49.000 61.000 30.000 1.929 2.402 31.1181 1.929 2.402 31.000 2.000 2.402 31.000 2.000 2.402 31.000 -1.024 -0.748 -1.1496 -1.024 -0.748 11.181 1.024 -0.748 213.000 -26.000 -1.024 -1.024 1.024 -0.748 11.186 -1.024 -0.748 11.181 1.024 -0.748 11.149 -1.024 -0.748 11.1260 (5.605) 1640.0 11.260.0 (5.605) 1640.0 11.260.0 (5.605) 1225.5 11.260.0 (1.021) 279.510	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 2 3 3 3 00 $334,000$ $334,000$ $334,000$ $334,000$ $334,000$ $334,000$ $334,000$ $314,000$ $61,000$ $314,000$ $61,000$ $314,000$ $61,000$ $312,000$ $314,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,000$ $61,000$ $312,00$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 33,000 (7.295) $(1925,0)$ (8) $(000$ $324,000$ $51,000$ $61,000$ $61,000$ $33,000$ $33,000$ $33,000$ $33,000$ $33,000$ $31,000$ $31,000$ $31,000$ $31,000$ $31,000$ $31,000$ $31,000$ $31,000$ $31,000$ $61,000$ $61,000$ 000 $31,000$	1 2 334,000 334,000 61,000 232,000 000 49,000 61,000 232,000 000 24,02 24,02 10,000 232,000 000 24,02 10,000 24,02 10,000 24,02 10,000 24,02 10,000 24,02 10,000 24,02 10,000 24,02	$\frac{\left \text{Force Point # = } \right 1260 \text{ (} 1280 \text{)} \frac{12200 \text{ (} 7235 \text{)} 1925 \text{ (} 020 \text{)} \frac{334.000 }{334.000 } \frac{334.000 }{2402 } \frac{334.000 }{2402 } \frac{334.000 }{2402 } \frac{336.000 }{332.000 } \frac{312.000 }{332.000 } \frac{312.000 }{2402 } \frac{313.000 }{2402 } \frac{332.000 }{332.000 } \frac{313.000 }{332.000 } \frac{313.000 }{2402 } \frac{332.000 }{332.000 } \frac{313.000 }{332.000 } \frac{313.000 }{2402 } \frac{332.000 }{332.000 } \frac{313.000 }{332$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 33,000 51,000 61,000 33,000 61,000	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

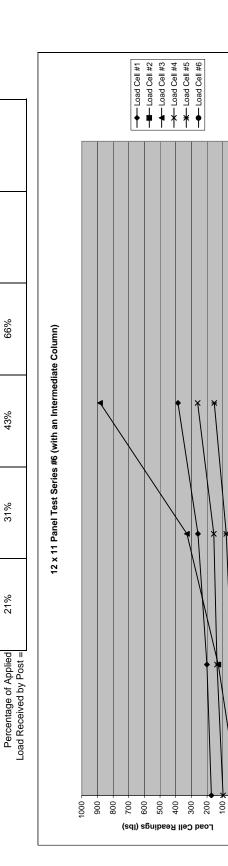

Full Scale Test Results using a Articulating Spreader Frame (12 x 11 Panel) - Series # 4


Full Scale Test Results using a Articulating Spreader Frame (12 x 11 Panel) - Series # 5

Force Point # => 1 2 3 Applied Load To Panel · Ib (kN) Torce Point # => 1 2 3 3 4	Deflection Data			8/16/2006		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Applied	d Load To Panel - lb (KN)
1260.0 (5.605) 1640.0 (7.295) 1925.0 (8.563) 314.000 332.000 332.000 342.000 342.000 45.000 63.000 73.000 73.000 73.000 1.772 2.480 2.874 2.874 301.000 58.000 71.000 317.000 35.000 58.000 71.000 2.795 1.378 2.283 2.795 2.795 211.000 28.000 71.000 34.000 16.000 28.000 34.000 34.000 0.630 1.102 2.39.000 34.000	Force Point # =>	.	2	e	4	
314.000 332.000 342.000 45.000 63.000 73.000 1.772 2.480 73.000 301.000 324.000 337.000 35.000 58.000 71.000 35.000 58.000 71.000 1.378 2.283 2.795 211.000 223.000 34.000 16.000 28.000 1.102 0.630 1.102 1.339			1640.0 (7.295)	1925.0 (8.563)	2500.0 (11.121)	
45.000 63.000 73.000 1.772 2.480 73.000 301.000 324.000 337.000 35.000 58.000 71.000 1.378 2.283 2.795 211.000 223.000 34.000 16.000 28.000 34.000 0.630 1.102 1.339	269.000	314.000	332.000	342.000	369.000	
1.772 2.480 2.874 301.000 324.000 337.000 35.000 58.000 71.000 1.378 2.283 2.795 211.000 223.000 34.000 16.000 28.000 34.000 0.630 1.102 1.339	Deflection at Top (mm) =	45.00	63.000	73.000	100.000	
301.000 324.000 337.000 337.000 35.000 58.000 71.000 71.000 1.378 2.283 2.795 2.795 211.000 223.000 229.000 34.000 16.000 28.000 34.000 34.000 0.630 1.102 1.339	Deflection at Top (in) =		2.480	2.874	3.937	
301.000 324.000 337.000 337.000 337.000 31.000 71						
35.000 58.000 71.000 1.378 2.283 2.795 1.378 2.283 2.795 1.000 2.23.000 229.000 16.000 28.000 34.000 0.630 1.102 1.339	266.000		324.000	337.000	388.000	
1.378 2.283 2.795 211.000 223.000 229.000 16.000 28.000 34.000 0.630 1.102 1.339	Deflection at Mid-Panel (mm) =	35.00	58.000	71.000	122.000	
211.000 223.000 229.000 16.000 28.000 34.000 0.630 1.102 1.339	Deflection at Mid-Panel (in) =	1.378	2.283	2.795	4.803	
211.000 223.000 229.000 16.000 28.000 34.000 0.630 1.102 1.339						
16.000 28.000 34.000 0.630 1.102 1.339	195.000		223.000	229.000	249.000	
0.630 1.102 1.339 1.339	Deflection at Bottom (mm) =	16.000	28.000	34.000	54.000	
	Deflection at Bottom (in) =	0.630	1.102	1.339	2.126	

Load Cell Data

					Applied	d Load To	Applied Load To Panel - Ib (kN)	kN)	
Force Point # =>	•		,	2	8		7	1	
	1260.0	1260.0 (5.605)	1640.0	1640.0 (7.295)	1925.0 (8.563) 2500.0 (11.121	(8.563)	2500.0	(11.121)	
Load Cell				App	Applied Load Recieved at each Load Cell - Ib (kN)	ecieved at	each Load	Cell - Ib (J	(N)
-	144.856	(0.644)	223.404	(0.994)	144.856 (0.644) 223.404 (0.994) 293.792 (1.307) 393.763 (1.752	(1.307)	393.763	(1.752)	
2	194.395	(0.865)	240.969	(1.072)	194.395 (0.865) 240.969 (1.072) 249.069 (1.108) 205.532 (0.914	(1.108)	205.532	(0.914)	
З	0.000	(0.000)	4.012	(0.018)	0.000 (0.000) 4.012 (0.018) 24.071 (0.107) 375.109 (1.669	(0.107)	375.109	(1.669)	
4	184.000	(0.818)	250.000	(1.112)	184.000 (0.818) 250.000 (1.112) 286.000 (1.272) 364.000 (1.619	(1.272)	364.000	(1.619)	
5	106.563	(0.474)	141.007	(0.627)	106.563 (0.474) 141.007 (0.627) 185.140 (0.824) 216.355 (0.962	(0.824)	216.355	(0.962)	
9	0.000	(0.000)	000'0	(0.000)	(0000) 0000) 0000) 0000) 0000 (0000) 0000 (0000)	(0.000)	0.000	(00000)	
		100007		100007				101007	



Full Scale Test Results using a Articulating Spreader Frame (12 x 11 Panel Testing) - Series # 6 (with an Intermediate Column)

	Applied Load To Panel - lb (kN)	4	2555.0 (11.365)	357.000	97.000	3.819		302.000	80.000	3.150	249.000	57.000	2.244	
Testing = 10/10/2006	Applie	3	1925.0 (8.563)	316.000	56.000	2.205		269.000	47.000	1.850	229.000	37.000	1.457	
·		2	1640.0 (7.295)	300.000	40.000	1.575		256.000	34.000	1.339	220.000	28.000	1.102	
		Ļ	1260.0 (5.605)	282.000	22.000	0.866		240.000	18.000	0.709	207.000	15.000	0.591	
Deflection Data		Force Point # =>		260.000	Deflection at Top (mm) =	Deflection at Top (in) =	l	222.000	Deflection at Mid-Panel (mm) =	Deflection at Mid-Panel (in) =	192.000	Deflection at Bottom (mm) =	Deflection at Bottom (in) =	

Load Cell Data

Applied Load To Panel - Ib (kN)	2 3 4	1260.0 (5.605) 1640.0 (7.295) 1925.0 (8.563) 2555.0 (11.365)	Applied Load Recieved at each Load Cell - Ib (kN)	172.399 (0.767) 200.962 (0.894) 258.088 (1.148) 385.602 (1.715)		0.000 (0.000) 128.380 (0.571) 327.970 (1.459) 883.613 (3.930)	97.000 (0.431) 136.000 (0.605) 157.000 (0.698) 260.000 (1.157)	-1.076 -(0.005) 43.056 (0.192) 76.424 (0.340) 153.924 (0.685)	0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
		5.605) 1640		0.767) 200.9	0.00 (000.0	0.000) 128.3	0.431) 136.0	(0.005) 43.05	0.00 (000.0
	1	1260.0 (172.399 (0.000	0.000 (97.000 (-1.076 -	0.000
	Force Point # =>		Load Cell	Ţ	2	3	4	5	9

5

Force Point #

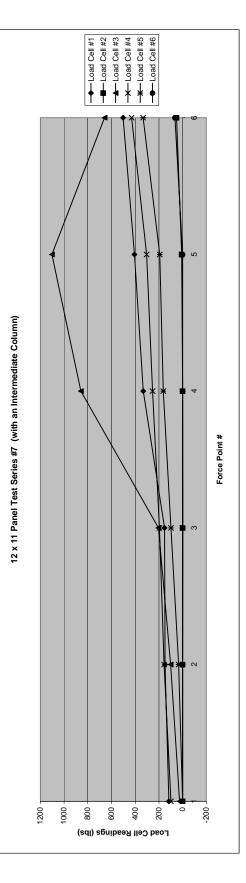
0

-100

Full Scale Test Results using a Articulating Spreader Frame (12 x 11 Panel Testing) - Series #7 (with an Intermediate Column)

ata
õ
0
ğ
fle
صّ

Testing = 10/10/2006


, -		2	3 Applied	Applied Load To Panel - Ib (KN	(KN) 5	9	Released
1260.0 (5.605) 1640.0 (7.295) 1925.	-	1925.	1925.0 (8.563)	2555.0 (11.365)	3095.0 (13.767)	3670.0 (16.325)	0.0 (0.000)
307.000 320.000			331.000	357.000	379.000	449.000	345.000
25.000 38.000	38.000		49.000	75.000	97.000	167.000	63.000
0.984 1.496			1.929	2.953	3.819	6.575	2.480
260.000 272.000 28		28	280.000	301.000	319.000	376.000	284.000
20.000 32.000 4		4(40.000	61.000	79.000	136.000	44.000
0.787 1.260 1			1.575	2.402	3.110	5.354	1.732
218.000 226.000 233		23:	232.000	245.000	257.000	296.000	219.000
14.000 22.000 28		28	28.000	41.000	53.000	92.000	15.000
0.551 0.866 0.			1.102	1.614	2.087	3.622	0.591

Load Cell Data

		~	r	-					
	ŝ	(16.325		(2.233)	(0.225)	(2.931)	(1.913)	(1.479)	(0.286)
	(3670.0		501.894	50.624	658.949 (2.931	430.000	332.605	64.277
		(13.767)		(1.806)		(4.903)	(1.348)	(0.857)	(0.000)
	5	3095.0	kN)	406.004	8.100	1102.260	303.000	192.674	0.000
(kN)	_	(11.365)	l Cell - lb ((1.475)	0.000 (0.000) 8.100 (0.036)	(3.819)	(1.125)	(0.728)	(0.000)
Panel - Ib	4	2555.0	each Loac	331.536	0.000	858.539	253.000	163.612	0.000
Applied Load To Panel - Ib (kN	8	(8.563)	Applied Load Recieved at each Load Cell - lb (kN)	(0.676)	(0.000)	(0.906)	(0.867)	(0.436)	-(0.005)
Applie		1925.0	ed Load R	151.996	0.000	203.602	195.000	97.952	-1.071
		(7.295)	Appli	(0.658)	(0.000)	(0.451)	(0.694)	(0.148)	(0.000)
	2	1260.0 (5.605) 1640.0 (7.295) 1925.0 (8.563) 2555.0 (11.365) 3095.0 (13.767) 3670.0 (16.325		115.272 (0.513) 147.916 (0.658) 151.996 (0.676) 331.536 (1.475) 406.004 (1.806) 501.894 (2.233	(0.000) 0.000 (0.000) 0.000 (0.000)	25.074 (0.112) 101.300 (0.451) 203.602 (0.906) 858.539 (3.819) 1102.260 (4.903)	99.000 (0.440) 156.000 (0.694) 195.000 (0.867) 253.000 (1.125) 303.000 (1.348) 430.000 (1.913)	0.000 (0.000) 33.368 (0.148) 97.952 (0.436) 163.612 (0.728) 192.674 (0.857) 332.605 (0.000 (0.000) 0.000 (0.000) -1.071 -(0.005) 0.000 (0.000) 0.000 (0.000) 64.277 (0.286)
		(5.605)		(0.513)	(0.000)	(0.112)	(0.440)	(0.000)	(0.000)
	•	1260.0		115.272	0.000 (25.074	000.66	0.000	0.000
	Force Point # =>		Load Cell	T.	2	3	4	5	6

9.067)	
2038.349 (
(8.950)	
2012.038	
(7.147)	
1606.686 (7.1	
(2.880)	
647.479 (
1.951)	
438.584 (
(1.065)	
239.347	
۲) =	L
lb (kh	
Post -	
ed to	
ansferr	
ad tra	
otal Lo	
F	

